

The Open University of Sri Lanka Faculty of Engineering Technology Department of Electrical and Computer Engineering

Study Programme : Bachelor of Technology Honours in Engineering

Name of the Examination : Final Examination

Course Code and Title : EEX3532/ECX3232 -Electrical Power

Academic Year : 2017/18

Date : 08th February 2019

Time : 0930-1230 hrs

Duration : 3 hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Eight (8) questions in Five (5) pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Relevant charts/ codes are provided.
- 6. This is a Closed Book Test (CBT).
- 7. Answers should be in clear hand writing.
- 8. Do not use Red colour pen.

Question 01

- a) Briefly describe the economic and technical factors which are directly involved in deciding electricity transmission and distribution voltage levels [05 Marks]
- b) What are the voltage levels used in Sri Lankan electricity transmission and distribution network? Explain which type of transformers are used in each voltage level [03 Marks]
- c) A load variation through-out a day of a certain consumer metered at 400/230 kV, 50 Hz is shown in Table Q1

Table Q1

Time (hours)	0000-0600	0600-1300 1300-1800		1800-2400	
Total Load (kW)	25	40	43	25	
Load Description	Lighting Load only	Lighting Load +	Lighting Load +	Lighting Load only	
		15 kW induction motor load operating at 0.85 p.f	18 kW induction motor load operating at 0.9 p.f.		

- i. Draw the daily load curve and determine the load factor of the above consumer.
- ii. What is the maximum demand?
- iii. What is the applicable tariff structure for this consumer?
- iv. Determine the monthly electricity bill of this consumer.
- v. Calculate the size of the capacitance/phase need to be installed between 0600-1300 hrs to improve the power factor to unity. Capacitors are star connected.

Note: A month consist of 30 days

Tariff rates offered from the utility is given in page 5

[12 Marks]

Question 02

a) A single phase transformer delivers power to an inductive load. Draw a phosor diagram for the transformer at full load situation. Assume transformer has impedances on its windings.

[6 Marks]

b) An open circuit (OC) test and short circuit (SC) test are conducted on a single phase transformer rated at 5 kVA, 200/1000 V, 50 Hz. The following results were obtained from the two tests.

SC test:

V = 50 V

I= 5 A

P=110W

OC test:

V=200V

I=1.2 A

P=90 W

- i. Calculate the value of the reactance and resistance of the transformer, refereed to the LV side
- ii. Calculate the the values of magnetizing reactance (X_m) and core loss resistance (R_C) on the LV side
- iii. Draw the equivalent circuit of the transformer referred to LV side
- iv. Determine the output secondary voltage when it delivering a load of 3 kW at 0.8 lagging power factor.
- v. Determine the percentage voltage regulation

[14 Marks]

Question 03

- a) Explain the terms "ELCB" and "RCCB" used in electrical installation. What is the main difference between them? Which one you recommend to use in Sri Lanka. [4 Marks]
- b) Figure Q3 shows two different types of electric shock. What are the protective measures need to be used to protect from each shock separately. Also explain their limitations.

[4 Marks]

DIRECT CONTACT

Is - touch current

INDIRECT CONTACT

ld - insulation fault current

Figure Q3

- c) What are the different applications of AC and DC motors in your household? Give examples of each application with the reason of selecting the specific motor [4 Marks]
- d) Explain the reason for "Maximum demand Charge" applicable for industrial consumers?

[4 Marks]

e) What are the merits and demerits of a coal power plant when compared with a natural gas power plant [4 Marks

f)

Question 04

a) Figure Q4 shows the characteristics curves of DC motor. Identify type of the motor and derive expression for each characteristics from basic Principles. [4 Marks]

Figure Q4

b) A 230 V DC series motor has armature and field resistances of 0.15 Ω and 0.1 Ω respectively. It draws a current of 30 A from the supply while running at 1000 rpm. If an external resistance of 1 Ω is connected in series with this motor, calculate the new steady state armature current and the speed. Assume the load torque remains constant.

[16 Marks]

Question 05

- a) Briefly explain the speed controlling methods applicable for DC shunt motors. [4 Marks]
- b) A 230 V DC shunt motor has armature and field resistances of 0.2 Ω and 230 Ω respectively. The motor is driving a load torque varies proportionally with the speed and running at 1000 rpm drawing 10 A current from the supply. If an external resistance of 5 Ω is inserted in the armature circuit, calculate the new steady state armature current and the speed.

Neglect armature reaction and saturation

[16 Marks]

Question 06

a) Define the terms "Apparent power" and "Power factor".

[2 Marks]

b) Why it is important to maintain the power factor closer to unity? Give reasons.

[3 Marks]

- c) A 230V, single phase, 50Hz induction motor draws a current of 40A at a power factor of 0.75 lagging. Determine
 - i. the real power taken from the supply
 - ii. the reactive power taken from the supply
 - iii. Find the value of a capacitor connected across the terminal of the motor, which will raise the power factor to 0.95. [15 Marks]

Question 07

- a) What are the advantages of wound rotor induction motor when compared with squirrel cage rotor induction motor [4 Marks]
- b) A three phase induction motor having a synchronous speed of 1200 rpm draws 80 kW from a three-phase feeder. The copper losses and iron losses in the stator are measured as 5 kW. The windage and friction losses are 2 kW. If the motor runs at 1152 rpm, Calculate;
 - i. Power transmitted to the rotor
 - ii. Rotor Copper loss
 - iii. The mechanical power developed
 - iv. The shaft torque
 - v. The efficiency of the motor

[16 Marks]

Question 08

- a. Explain the term "Harmonics" in power systems and what are the causes for power system harmonics? [3 Marks]
- b. How can you avoid harmonics in power system? Briefly explain two methods. [2 Marks]
- c. A 60 Hz source contains a fundamental of 730 V and a 5th harmonic of 108 V. The source is connected to an inductance of 7 mH in series with a resistance of 12 Ω . Calculate the effective values of the following current and voltages:
 - i. Fundamental current
 - ii. 5th harmonic current
 - iii. Current in the circuit
 - iv. Voltage across the resister
 - v. Voltage across the inductor

[15 Marks]

Tariff rates offered from the utility for Q#1

Customer Category I-1

This rate shall apply to supplies at each individual point of supply delivered and metered at 400/230 Volt nominal and where the contract demand is less than or equal to 42 kVA.

Customer Category I-2

This rate shall apply to supplies at each individual point of supply delivered and metered at 400/230 Volt nominal and where the contract demand exceeds 42 kVA.

Customer Category I-3

This rate shall apply to supplies at each individual point of supply delivered and metered at 11,000 Volt nominal and above.

Customer Category	Energy charge (LKR/kWh)			Fixed Charge (LKR/ month)	Maximum Demand Charge per month (LKR /kVA)	Fuel adjustment charge (% of Energy Charge)
	Peak (1830hr- 2230hr)	Off-Peak (2230hr- 0530hr)	Day (0530hr- 1830hr)			
Industry			<u> </u>		···	
I-1		12.50		600		15
I-2	21.00	7.00	11.30	3,000	1,100	15
I-3	24.00	6.00	10.50	3,000	1,000	15
Street Lighting	17.00			None	None	0

Note: Fuel adjustments charge is applied only on monthly energy charge. It is not applied on monthly fixed charge and monthly demand charge.