

The Open University of Sri Lanka Faculty of Engineering Technology Department of Electrical and Computer Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: EEX5543/ECX5243 Physical and Opto

Electronics

Academic Year

: 2017/18

Date

: 07th February 2019

Time : 0930-1230hrs

General Instructions

1. Read all instructions carefully before answering the questions.

2. This question paper consists of Eight (08) questions in Three (03) pages.

3. Answer **Only five questions** by answering selecting not more than two question form each section.

4. All questions carry equal marks.

5. Answer for each question should commence from a new page.

6. Assume any missing parameters with suitable values.

7. This is a Closed Book Test (CBT).

8. Answers should be in clear hand writing.

9. Do not use Red colour pen.

10. All symbols have their usual meanings.

Note:

Charge of an electron = 1.602×10^{-19} C

Boltzmann constant = 8.617×10^{-5} eV K⁻¹

Planck's constant = 6.626×10^{-34} Js

Speed of light in a vacuum = 3×10^8 m s⁻¹

Section A

Q1.

- (a) As the temperature of either n-type or p-type semiconductor material increases how does the Fermi level move? [6]
- (b) Determine the location of Fermi level with respect to E_c and E_v when 10^6 phosphorus atoms are added to a sample of intrinsic silicon at T=300 K. $n_i=1\times 10^{10}$.
- (c) Repeat for T = 600 K and compare with the result in part (b). [4]

Q2.

- (a) Briefly explain why the narrower the band gap the higher is the intrinsic carrier density in a semiconductor. [6]
- (b) Assume that silicon, germanium and gallium arsenide each have dopant concentrations of $N_d=1\times 10^{13}~{\rm cm}^{-3}$ and $N_a=2.5\times 10^{13}~{\rm cm}^{-3}$ at $T=300~{\rm K}$. [10]

Material	n_i
Si	$1.5 \times 10^{10} \text{ cm}^{-3}$
Ge	$2.4 \times 10^{13} \text{ cm}^{-3}$
GaAs	$1.8 \times 10^6 \mathrm{cm}^{-3}$

For each of the three materials

- (i) Is this material n-type or p-type?
- (ii) Calculate electron density n_0 hole density and p_0 .
- (c) Interpret your results in part (b).

[4]

Q3.

- (a) Why does a capacitance exist in a reverse biased pn junction? Why does it decrease with reverse biased voltage increasing?
- (b) Consider a uniformly doped silicon pn junction with doping concentrations $N_a = 5 \times 10^{17} {\rm cm}^{-3}$ and $N_d = 1 \times 10^{17} {\rm cm}^{-3}$. Calculate the built in voltage V_0 . [10]
- (c) What will happen to V_0 when the temperature is increased by 5%. [4]

Section B

Q4.

- (a) Define a hole. Bring out clearly its importance in the conduction of semiconductor material. [10]
- (b) How does depletion region capacitance of a reverse biased diode vary with the magnitude of the reverse voltage? Explain. [10]

Q5.

- (a) Discuss the condition when the base-collector junction become forward biased and hence the transistor enters the saturation region. [10]
- (b) Clarify the situation when the pinch-off condition occurs for smaller values of $|V_{ds}|$. What will happen to the maximum drain current? [10]

Q6.

- (a) Why are semiconductor photodiodes used almost exclusively as photodetectors for all optical communication systems? Discuss. [10]
- (b) What is the significance of responsivity and quantum efficiency in characterizing a photodetector? Explain. [10]

Section C

Q7.

- (a) List some of the main application areas of the semiconductor pn photodiode. [4]
- (b) How is the p-i-n photodetector different from avalanche photodiode? [4]
- (c) Photons having energy 1.5×10^{-19} J are incident on a photodiode having responsivity of 0.694 A/W. [12]
 - a. At what wavelength is the photodiode operating?
 - b. Calculate the quantum efficiency.
 - c. If the output power is 10 μ W, find the generated photocurrent.
 - d. Determine the wavelength at which the quantum efficiency and the responsivity are equal.

Q8.

- (a) Compare on
 - a. Single mode fiber and multi mode fiber
 - b. Step index fiber and graded index fiber

[6]

- (b) Justify the statement "Multimode graded index fibers exhibit far less intermodal dispersion than multimode step index fibers". [5]
- (c) A step index fiber has a numerical aperture NA=0.2588, core refractive index = 1.5, cladding refractive index = 1.47 and a diameter 125 μ m. A light sourse is coupled to this fiber which emits 75 % of its light into a 60 degree full-cone angle, 50 % into a 30 degree cone and 25 % into a 15 degree cone. Calculate the following when this source and fiber are connected [9]
 - a. Acceptance angle
 - b. Coupling efficiency
 - c. The critical angle at the core cladding interface