

The Open University of Sri Lanka Faculty of Engineering Technology Department of Electrical & Computer Engineering

Study Programme : Bachelor of Software Engineering Honours

Name of the Examination: Final Examination

Course Code and Title: EEZ3361/ECZ3161 Mathematics for computing

Academic Year : 2

: 2017/18

Date

: 5th February 2019

Time

: 0930hrs -1230hrs

Duration

: 3 hours

General Instructions

- 1. Read all the instructions carefully before answering the questions.
- 2. This question paper consists of Eight (8) questions in Five (5) pages.
- 3. Answer any Five (5) questions only. All the questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Show the intermediate steps clearly.
- 6. This is a Closed Book Test (CBT).
- 7. Answers should be in clear hand writing.
- 8. Do not use Red colour pen.

Q1

(a)

(i) By using the differentiation of the first principles, find the gradient of $f(x) = 5x^2 - 3x + 7$ at the point x = -2. [4 [4 Marks]

(ii) Evaluate the limit
$$\lim_{x \to 0} \frac{\sin(\frac{\pi}{4} + x) - \sin(\frac{\pi}{4})}{x}$$
 [4 Marks]

(b) Find the first derivative of each of the following functions.

[6 Marks]

(i)
$$f(x) = \frac{x \cos ec(x)}{3 - \cos ec(x)}$$

(ii)
$$f(x) = (2e^{x^2} + x^2)^3$$

(c) Find the equation of the line perpendicular to the graph of $y = \frac{\tan x}{1 + \tan x}$ at the point $x = \frac{\pi}{4}$. [6 Marks]

Q2

(a) Prove that the matrix
$$\begin{bmatrix} -i & 2+i \\ -2+i & 0 \end{bmatrix}$$
 is a skew-Hermitian matrix. [4 Marks]

(b)

(i) If
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ 1 & 0 \end{bmatrix}$ show that $AB \neq BA$. [3 Marks]

(ii) If
$$A = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 3 & 2 \\ -1 & 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 3 & 0 & 2 \end{bmatrix}$ find $2A - 3B$. [3 Marks]

(c) Show that the matrix $\begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ is the inverse matrix of the matrix

$$\begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}.$$
 [10 Marks]

Q3

- (a) By using the integration by parts, find the indefinite integral $\int x^2 e^{3x} dx$.
- [6 Marks]

(b) Evaluate following the definite integrals.

[8 Marks]

(i)
$$\int_{0}^{\frac{\pi}{3}} \frac{\cos x + \cos x \tan^{2} x}{2 \sec^{2} x} dx$$
 (ii)
$$\int_{0}^{2} x (x^{2} - 1)^{7} dx$$

(c) Find the partial fractions of $\frac{3}{(x-1)(x+1)^2}$.

[6 Marks]

Hence, find the indefinite integral $\int \frac{3}{(x-1)(x+1)^2} dx$.

Q4

(a) Evaluate the limit $\lim_{x\to 0} \frac{\cos x - 1}{x}$

[4 Marks]

(b) Find the first derivative of each of the following functions.

(i)
$$f(x) = 4x^4 - 2x + 3\tan x + 7$$

[4 Marks]

(ii)
$$f(x) = \frac{4x^2 - 2x + 7}{x^3}$$

[4 Marks]

(iii)
$$f(x) = [\ln \sqrt{x+1}]$$

[4 Marks]

(iv)
$$f(x) = \sin 5x^3 + 2x$$

[4 Marks]

Q5

(a) A pulley belt of length 300 cm takes 2 s to make a complete revolution. If the radius of the pulley is 150 mm, then find the angular velocity of a point on the rim of the pulley.

[4 Marks]

(b) Find the value of

(i)
$$\operatorname{Sin} x + \operatorname{Sin} 2x + \operatorname{Sin} 4x$$
, when $x = 60^{\circ}$

[4 Marks]

(ii)
$$\cos 4x - \cos 3x + \cos x$$
, when $x = 120^{\circ}$

[4 Marks]

(c) Prove that

$$\frac{Tan\theta}{1 + Sec\theta} - \frac{Tan\theta}{1 - Sec\theta} = 2Co\sec\theta.$$

[8 Marks]

Q6

(a) Let
$$A = \begin{bmatrix} 1 & 4 & 5 \\ 0 & 3 & 2 \\ -1 & 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 2 \\ 3 & 0 & 2 \end{bmatrix}$. Find $A^T B^T$

[4 Marks]

- (b) Convert the following angles to given units.
 - (i) 102.4761⁰ to Minutes, Seconds form.

[3 Marks]

(ii) $57^{\circ}27'6''$ to decimal form.

[3 Marks]

(c) Prove the following identity.

[10 Marks]

$$\frac{(\tan x + \sec x - 1)}{(\tan x - \sec x + 1)} = \frac{(1 + \sin x)}{\cos x}$$

Q7

(a) If P, Q and R are Boolean variables, then construct a truth table for $(P \rightarrow Q) \land (Q \rightarrow R)$.

[4 Marks]

- (b) Using the results of boolean algebra, minimize the following expressions.
 - (i) (a + b)(a + b') = a.

[3 Marks]

(ii) (a(b + z(x + a')))' = a' + b'(z' + x')

[3 Marks]

(c) If R, S, T, U and F are Boolean variables, then

(i) Simplify the following truth table by using Karnaugh map

[5 Marks]

(ii) Write down the simplified expression.

[5 Marks]

R	S	Ŧ	U	F
0	0	0	0	0
0	Ð	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	Ð	1	1
1	0	1	0	0
1	0	1	1	O
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1_	1	1	1	1

Q8

(a)

(i) Using Newton's backward interpolation formula and the following table, calculate an approximation value for f (7.5) correct to 9 decimal places.

[8 Marks]

X	1	2	3	4	5	6	7	8
y=f(x)	1	8	27	64	125	216	343	512

- (ii) Assume that the equation $x^3 2x 5 = 0$ has a root near 2. Using Newton-Raphson method, calculate an approximation value for the above root correct to 9 decimal places. [8 Marks]
- (b) A girl thinks that she can read 240 pages of a book every day. However, in one week (7 days) she has read only 200 pages. Calculate the percentage error.

[4 Marks]

