

BA DEGREE IN SOCIAL SCIENCES - LEVEL 4 (OLD SYLLABUS)

FINAL EXAMINATION - 2018/2019

SSE 1101: INTRODUCTION TO QUANTITATIVE TECHNIQUES

DURATION: TWO (02) HOURS ONLY.

Time: 01.30 p.m. - 03.30 p.m.

Date: 10th March 2019

Instructions:

> Answer four questions selecting at least Two (02) questions from each section.

> Standard Normal (Z) Tables are provided.

Section One

- 1. (i) Differentiate data from information
 - (ii) Briefly explain what descriptive statistics and inferential statistics.
- 2. What type of graph would you use to present the following? Explain your choice.
 - (i) The number of female students in each course in your day-school.
 - (ii) The annual number of road fatalities (the road toll) in your province or territory over the last 05 years.
 - (iii) The speed (km/h) of the world's 20 fastest animals.
 - (iv) Average incomes levels of varies ethnic groups in Sri Lanka.
 - (v) Total Government expenditures by selected categories.
- 3. (i) Provide two examples each of nominal, ordinal, and numeric data.
 - (ii) In a taste test 115 people were asked to taste five different brands of tea and to report which one they preferred.

The result is listed have

Brand	Frequency
A	34
В	18
C	12
D	41
Е	10

- (a) Draw a bar chart
- (b) Draw a pie chart
- (c) What do charts tell you about the sample of tea drinkers?
- 4. Imagine that the number of unemployed people is given in the table below.

4.1		11
Age group	No. unemployed	
15-19	3,688	
20-24	4,031	
25-34	5,432	
35-44	4,360	
45-54	3,162	
55-64	1,702	
	1	- 1

0003⁵

- (a) Calculate the average age of an unemployed person using the midpoint.
- (b) Calculate the standard deviation
- (c) Comment on the spread of the data.

Section Two

- 5. (a) Draw the figure (s) and represent the area (s) for the followings and then
 - (i) Find the area under the normal distributing curve between Z = 0 and Z = 2.54.
 - (ii) Find the area to the right of Z = 1.11
 - (iii) Find the area between Z = -2.00 and Z = -2.47
 - (iv) Find the area to the right of Z = +2.43 and to the left of Z = -3.01
 - (b) From the information give here, determine the 95% confidence interval estimate of the population mean.

X (mean) = 100, σ (standard deviation) = 20 n= 25

- 6. Explain the following items, and give an example of each.
 - (i) Null and alternative hypotheses.
 - (ii) A type 1 error and a type 11 error
 - (iii) a statistical test and level of significant
 - (iv) A one-tailed and a two tailed test
- 7. The income distribution of the population of a certain village has a mean of Rs. 6000 a standard deviation of Rs. 180.
 - (i) Is this a one-tailed or a two tailed test?
 - (ii) State the decision rule
 - (iii) Could a sample of 64 persons with a mean income of Rs.5950 belong to this population? Test this at 5 % level of significance.
- 8. Write short notes on any three (04) of the following
 - (i) Categorical variables and continuous variables
 - (ii) Pie chart and scatter plot
 - (iii) Central tendency and measures of Dispersion
 - (iv) Standard error of mean and confidence intervals
 - (v) Alpha value and test statistic
 - (vi) The cumulative frequency and cumulative percentage

**** Copy Rights Reserved****

Standard Normal Probabilities

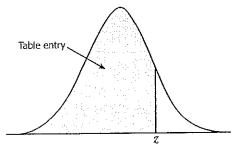


Table entry for z is the area under the standard normal curve to the left of z.

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	5714	.5753
0.2	.5793	.5832	.5871	. 5910	5948	.5987	.6026	.6064	6103	.6141
0.3	,6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	. 7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
8.0	.7881	7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	. 9236	.9251	.9265	.9279	.9292	.9306	.9319
1,5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	,9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	,9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	,9726	9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2,3	.9893	,9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	,9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	. 9957	.9959	.9960	.9961	.9962	.9963	,9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	,9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	,9996	.9996	9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998

emperaturation de la color de

Standard Normal Probabilities

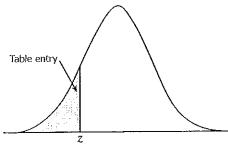


Table entry for z is the area under the standard normal curve to the left of z.

z	,00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	,0009	.0009	.0008	.0008	.0008	.0008	0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2,9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	:0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	,0055	.0054	.0052	.0051	,0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
2i3 ⊭	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	,0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.01.74	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1,9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	-0436	.0427	.0418	,0409	,0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630		.0606	0594	.0582	.0571	0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	,0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
÷0.9	.1841	.1814	-,1788	.1762	,1736	.1711	.1685	,1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	,2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	,2546	.2514	.2483	.2451
-0,5	.3085	-,3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	,3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	,3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0,1	.4602	.4562	.4522	.4483	,4443	.4404	.4364	.4325	.4286	,4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641