THE OPEN UNIVERSITY OF SRI LANKA

B.Sc. DEGREE PROGRAMME – LEVEL 05

FINAL EXAMINATION – 2016/2017

BOTANY

BOU3106/BOE5106 – PLANT BREEDING

DURATION: TW	O (02) I	HOURS
---------------------	----------	-------

DATE: 12. 01. 2018

TIME: 1.30 - 3.30 p.m.

ANSWER ANY FOUR (04) QUESTIONS

1.

A)

- i) Explain the following;
 - a) Average effect (α)
 - b) Breeding value (A)
 - c) Dominance deviation (D)
- ii) Consider that the leaf length in Cinnamon is influenced by a gene with two alleles (L/I). The mean leaf length of three (03) genotypes/varieties in Cinnamon at 6 weeks of age are as follows;

		Genotypes			
	LL	Ll	II		
Leaf length in cm	06	05	07		

Determine the average effect of the genes. (Assume that the allele frequency (q) of l is 0.4)

B)

- i) Name the four (04) main factors which contribute to the change in the gene frequencies of a population.
- ii) At a particular locus which controls the flower colour, there are two alleles, M and m. The mutation rate of M to m is 3.0×10^{-5} , whereas the mutation rate of m to M is 6.0×10^{-7} . Allele frequency (p) of M is 0.6.

Assumption: No other factor is operating in the population to disturb the equilibrium.

What is the equilibrium frequency of m allele in the population?

2.

A)

- i) Heritability of a trait is a measure of the degree of genetic variation among individuals in a population for that trait. Explain the advantage/s of estimating the heritability value of an interested trait when breeding a new crop variety.
- ii) Two homozygous varieties of tomato were crossed to produce F_1 hybrids. The average phenotypic variance in yield of three populations P_1 , P_2 and F_1 was 10.50. The variance of F_2 was 20.50.
 - a) Calculate the heritability of yield in the F₂ population.
 - b) Do you think that subsequent selection in future generations would be successful in further changing the yield in tomato? Briefly explain.

B)

i) In corn, the inbred lines, A, B, C, D and E were crossed in all possible combinations in a diallel cross. The progeny produced the following data for the yield.

	A	В	C	D	E
Å	30	31	42	30	
$^{1}\mathbf{B}$	41 -	38	40	35	33
C	40	37	39	37	36
D	30	42	37	35.	30
${f E}$	30	35	30	- 28	23

- i) Calculate the General Combining Ability (GCA) of each line.
- ii) Select the best line for GCA.

3.

- A) Asexually propagated plants have a variety of modes of propagation. What are the different breeding methods identified for these plants?
- B) A clone is always propagated and maintained vegetatively. This is the main way by which a clone differs from a pure line of self-pollinated crops and inbred line of cross pollinated crops.

 Give the main differences among a pure line, an inbred line and a clone.

C)

- i) Give an account of the procedure of clonal selection of asexually propagated plants.
- ii) What are the advantages and drawbacks of clonal selection?

4.

- i) Several types of selection methods are practiced for cross pollinated plants.
 What are they?
- ii) What is Recurrent Selection?
- iii) What is/are the advantage/s of Recurrent Selection as a plant selection method?
- iii) Name different types of Recurrent Selection methods available and briefly describe each method.
- iv) With the help of a flow chart explain the main steps involved in the Reciprocal Recurrent Selection method.

5,

6.

A)

- Whether a plant is predominantly selfed or predominantly outcrossed will depend on several factors.
 - a) What are these factors?
 - b) Give a brief account of each factor.
- ii) Several possibilities are there in controlling plant reproduction either by manipulating incompatibility or by inducing Male Sterility.
 - a) What is self-incompatibility? Briefly explain.
 - b) What is Male Sterility? Briefly explain.
 - c) Explain how Male Sterility is applied in a plant breeding programme.
 - i) What is meant by Genetic Engineering of plants?
 - ii) What is/are the advantage/s of using Genetic Engineering in a plant breeding programme?
 - iii) Explain briefly about Genome Mapping and its applications in plant breeding
 - iv) Explain how Herbicide Resistant crop plants were developed using Genetic Engineering technique.

Copyrights Reserved -