00155

THE OPEN UNIVERSITY OF SRI LANKA DEPARTMENT OF COMPUTER SCIENCE B. SC. DEGREE PROGRAMME 2016/2017

FINAL EXAMINATION

CPU3141: DIGITAL COMPUTER FUNDAMENTALS

DURATION: TWO HOURS (2 HOURS)

Date: 27,12.2017

Time: 1.30 pm - 3.30 pm

Answer Four (04) Questions

Q1.

- (i) Briefly explain how a particular number can be represented in different Number **Systems** with the use of an **example**.
- (ii) Convert the following numbers into Decimal (Clearly show the steps).
 - a) $C52F_{16}$
 - b) 796₈
 - c) 100101₂
- (iii) Write -27₁₀ using following binary representations for negative numbers.
 - a) Sign Magnitude
 - b) One's Complement
 - c) Two's Complement
- (iv) What is the importance of Binary Numbers to the digital systems. ?
- (v) Calculate the following. (Clearly show the steps)
 - a) $1011_2 + 10111_2$
 - b) $1101_2 1010_2$
 - c) 10111₂ * 1011₂
 - d) 1111₂/101₂

- (i) Write short descriptions about the following Binary Codes.
 - a) Error- Detection code
 - b) Gray Code
 - c) BCD
- (ii) What is the difference between 1 + 1 in Binary and 1 + 1 in Boolean Logic?
- (iii) Prove the two De Morgan's Theorems. (Clearly Show the steps)
- (iv) Briefly describe the following Logic Families.
 - a) TTL Logic Family
 - b) CMOS Logic Family
- (v) Convert following Gray code value into binary. (Show the steps)

100100100

Q3.

- (i) Derive the **Truth Table** of a **JK** Flip flop and draw the corresponding **circuit** diagram (Consider a NAND implementation).
- (ii) Draw the logic circuit of a 4 to 1 Multiplexer.
- (iii) List three (03) uses of the Multiplexer.
- (iv) Draw the timing diagram (pulse waveform diagram) of the following circuit (Fig.1) with given inputs (Fig 2).

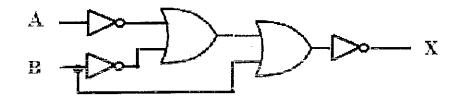


Figure 1: Logic Circuit

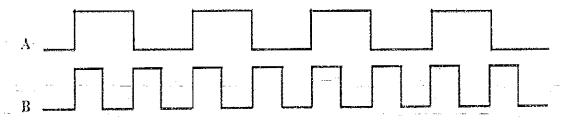


Figure 2: Inputs A and B

(v) Draw a Full Adder circuit for 3-bit addition operation. (Use block diagrams)

Q4.

Consider the following PoS Boolean Expression;

- (i) Draw the K'Map for the above expression.
- (ii) Simplify the K'Map and derive the simplified SoP expression.
- (iii) Simplify the K'Map and derive the simplified PoS expression.
- (iv) Draw the simplified circuits for both expressions in (ii) and (iii).
- (v) Discuss about Maxterm and Minterm representations.

Q5.

- (i) Draw the logic diagram of a 4 bit Ring Counter with timing diagram.
- (ii) Compare Asynchronous and Synchronous counters.
- (iii) Draw the Asynchronous Circuit described by the following State Table.

-			Next State			
Present State		X = 0		X = 1		
0	0	0	0	0.	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	1	1	1	0	1	

- (iv) Determine whether there is/are Race Conditions in the above (iii) Asynchronous Circuit. (Clearly show the steps)
- (v) Explain about a Circuit Hazard using an example.

Q6.

- (i) What are the **components** of the **CPU of a digital system**? Write short descriptions about the components.
- (ii) Briefly describe following terms related to Digital Memory.
 - a) Data
 - b) Address
 - c) Random Access
 - d) Sequential Access
- (iii) Why do we need Digital Memory? Discuss.
- (iv) Draw Block Diagrams of three (03) PLD configurations.
- (v) What are the design considerations in designing a RAM with PAL?

*** All Rights Reserved ***