

The Open University of Sri Lanka B.Sc/B.Ed. Degree Programme Final Examination - 2016/2017 Pure Mathematics - Level 04 PUU2144/PUE4144 - Group Theory I

Duration: - Two Hours

Date: -09. 01. 2018

Time: - 9.30am. To 11.30am.

Answer FOUR questions only.

- 1) a) Let $G = \{1,5,7,11\}$ and the operation \bigotimes_{12} defined by $a \bigotimes_{12} b = r$, $0 \le r < 12$ for all $a, b \in G$; where r is the remainder when ordinary multiplication ab is divided by 12.
 - (i) By using composition table, show that (G, \bigotimes_{12}) is a group.
 - (ii) Find the order of each element in G.
 - (iii) Does G form a cyclic group under the operation \otimes_{12} ? Justify your answer.
 - b) Let H be a non-empty subset of a group G. Prove that $H \leq G$, if and only if $ab^{-1} \in H, \forall a, b \in H$
- 2) a) Let $G = \mathbb{Z} \times \mathbb{Q}$, where \mathbb{Z} is the set of integers and \mathbb{Q} is the set of rational numbers. An operation o is defined on G by $(a,b)o(c,d) = (a+c,2^cb+d)$ for (a,b), $(c,d) \in G$.

Prove that (G, o) is a non-abelian group.

- b) Let G be the group of all non-zero complex numbers a + bi under usual multiplication.
 - (i) Find the inverse of $a + bi \in G$.
 - (ii) Show that $H = \{a + bi \in G : a^2 + b^2 = 1\}$ is a sub group of G.
- c) Prove that every cyclic group is abelian.
- 3) Let G, G' be two groups and $f: G \to G'$ be a homomorphism.

Define the Kernel of $f(\ker f)$.

Prove that

- (i) Kernal of f is a normal subgroup of G.
- (ii) f is one to one if and only if $Ker f = \{e\}$, where e is the identity of G.
- $(iii) f(x^{-1}) = (f(x))^{-1} \text{ for all } x \in G.$
- (iv) f(x) = f(y) if and only if $xy^{-1} \in ker f$ for $x, y \in G$.

- 4) a) Let G be a group and N be a normal subgroup of a group G. Show that G/N is abelian if and only if, $xyx^{-1}y^{-1} \in N$ for all $x, y \in G$.
 - b) Let $G = \{(a,b): a,b \in \mathbb{R}, a \neq 0\}$ be the group under the operation * defined by (a,b)*(c,d) = (ac,bc+d) for all $(a,b),(c,d) \in G$.
 - (i) Show that $N = \{(1, b): b \in \mathbb{R}\}$ is a normal subgroup of G.
 - (ii) Use part (a) to show that G/N is abelian.
- 5) Let (G,*) and (G',o) be two groups. Define what is meant by an isomorphism $f: G \to G'$
 - a) Let G be the group of all non-zero complex numbers under multiplication. Let G' be the group of all real 2×2 matrices of the form $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, where both a and b are not zero under the matrix multiplication.

 Show that $\phi: G \to G'$, defined by $\phi(a+ib) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ is a homomorphism. Is ϕ an isomorphism? Justify your answer.
 - b) Let G be a group and let $f: G \to G'$ such that $f(x) = x^{-1}$ be a homomorphism. Show that G is abelian.
- 6) a) Let G be a group and H be a subgroup of G.

 Show that if Ha and Hb are the two right cosets of G, then either $Ha \cap Hb = \emptyset$ or Ha = Hb.
 - b) If a and b are arbitrary distinct elements of a group G, and H is any subgroup of G, then show that
 - (i) $Ha = H = aH \Leftrightarrow a \in H$
 - (ii) $Ha = Hb \Leftrightarrow ab^{-1} \in H$
 - (iii) $aH = bH \iff b^{-1}a \in H$
 - c) Let H and K be two subgroups of a group G. Show that,
 - (iv) $H \cap K$ is a subgroup of G.
 - (v) If H and K are both normal in G, then $H \cap K$ is normal in K.