

B.Sc. DEGREE PROGRAMME 2017/2018

CSU4302: SYSTEM ANALYSIS AND SOFTWARE ENGINEERING

iN	O R	JOK 1ES1: 01	
D	URA	TION: ONE HOUR ONLY (1 HOUR)	Reg. No:
D	ate:	29 th December 2018	Time: 10.30am - 11.30am.
		er ALL Questions. the answers on the question paper itself.	
		l in the blanks.	
	a.	software products are and sold on the open market to any customer	
	b.	software products are	·
		are attributes of g	, and
	d.	,,	
		the key challenges faced by software enginee	
	e.	The activities of the software pro	
			and
2.	Ide	entify the most suitable 02 characteristics of th	e software process models from the list
	giv	ven below and write the correct letter in the app	propriate column of the table given below.
	a.	Easy to manage due to the strictness of the m	odel
	b.	Reduce development time and amount of soft	ware to develop
	c.	Limited flexibility for change requests	
	d.	Unsatisfactory sets of requirements	
	e.	Complex and difficult to follow	
	f.	Software management is difficult because the	process is not visible
	g.	Generates working software quickly and early	during the software life cycle
	h.	Problems may arise relates to the architecture	because not all requirements are gathered
		upfront for the entire software life cycle	
	i.	High amount of risk analysis	
	j.	Visible the misunderstanding software require	ements between user and the developer

Waterfall	Component	Incremental	Spiral Model	Evolutionary
model	Based Software	Model		development
	Engineering			

- 3. Underline the most suitable answer/s.
 - a. Which one is not a step of the requirement engineering process?
 - i. Elicitation
 - ii. Analysis
 - iii. Design
 - iv. Documentation
 - b. Consider a system where, a heat sensor detects unfamiliar behaviours in a chemical plant and alerts the security company. What kind of a requirement the system is providing?
 - i. Functional
 - ii. Non-Fucntional
 - iii. Domain
 - iv. Non of the above
 - c. Consider a web based system of a Hotel. Which one is a non-functional requirement?
 - i. The system enables users to place meal orders.
 - ii. The system displays the hotel vacancies.
 - iii. The system always responds to user clicks in less than a second.
 - iv. The system notifies the user when a new order arrives.
 - d. What is the interpretation if every requirement is stated in the Software Requirement Specification (SRS)?
 - i. Unambiguous
 - ii. Consistence
 - iii. Verifiable
 - iv. Completeness
 - e. What are the four dimensions of Dependebility?
 - i. Reliability, Usability, Availability and Safety
 - ii. Availability, Reliability, Safety and Security
 - iii. Availability, Reliability, Maintainability, Security
 - iv. Reliability, Usability, Availability and Maintainability
- 4. Identify the most suitable words in the blanks by considering the critical system achievements.

Reliability Achievement	Safety Achievement
avoidance	avoidance
detection and removal	detection and removal
tolerance	tolerance

_	D 11 11			C .1 .	1 1	C 1		. •
5.	Provide the	most suitable	category	of the system	m models.	for each	i descrii	otion.
	A A O T A OFF	11100000000000			CAR ELLO CO-TO	TOT TOTAL		~~~~.

a.	To show what lies outside the system boundaries.	
b.	To describe the overall behaviour of the system.	
c.	To describe the logical structure of data processed by the	
	system.	
d.	To describe the system in terms of object classes and their	
	associations	

_	** T * .	. 1			. •	•	
6.	AM rate	the	gheuzere	111	the	MANAM	chace
υ.	AATICO	uic	answers	111	uic	ZIYVII	space

i. ii.

WITTE	the answers in the given space
a. W	hat are the stages of risk based analysis, when preparing the critical system
sp	ecification?
i.	
ii.	
iii.	
iv.	
b. Na	ame a risk decomposition strategy;
i.	
c. W	hat are the 03 system organizational structures that are widely used when doing the
arc	chitecture of a system;
i.	
ii.	
iii.	
d. Ide	entify the two modular decomposition models;
i.	
ii.	
e. Na	ame the main 02 control styles of a system;

All Rights Reserved

p1