The Open University of Sri Lanka

B.Sc/B.Ed. DEGREE, CONTINUING EDUCATION PROGRAMME

Final Examination 2016/2017

Level 03 Pure Mathematics

PUU1142/PUE 3142- Vector Spaces

Date: - 29-12-2017

Time: 2.00 p.m. to 4.00 p.m.

Answer four questions only

1.

- (a) Let V be a vector space over a field F. Using the axioms of a vector space, prove that
 - (i) $0 \cdot x = 0$ for all $x \in V$,
 - (ii) $\alpha \cdot 0 = 0$ for all $\alpha \in F$,
 - (iii) $(-\alpha) \cdot x = -(\alpha \cdot x)$, for all $\alpha \in F$ and $x \in V$.
- (b) Let $V = \{ (a_1, a_2) \mid a_1, a_2 \in \mathbb{R} \}$. For every $(a_1, a_2), (b_1, b_2) \in V$, define $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$ for $c \in \mathbb{C}$ where \mathbb{C} is the complex number field. Is V a vector space over the field of complex numbers under these operations? Justify your answer.
- (c) Let $V = \{ (a_1, a_2) \mid a_1, a_2 \in \mathbb{R} \}$ For every $(a_1, a_2), (b_1, b_2) \in V$ define $(a_1, a_2) + (b_1, b_2) = (2a_1 + b_1, a_2 + 3b_2)$ and $c(a_1, a_2) = (ca_1, ca_2)$ for $c \in \mathbb{R}$ where \mathbb{R} is the field of real numbers. Is V a vector space over the field of real numbers under these operations? Justify your answer.

2.

- (a) Prove that if W_1 and W_2 are subspaces of a vector space V over a field F, then $W_1 + W_2 = \{ w_1 + w_2 \mid w_1 \in W_1 \text{ and } w_2 \in W_2 \}$ is a subspace of V over F.
- (b) Let W_1 and W_2 are subspaces of the vector space V over the field F. Prove that if $W_1 \cup W_2$ is a subspace of vector space V over the field F then $W_1 \subset W_2$ or $W_2 \subset W_1$.

(c) Determine whether each of the following sets are subspace of the vector space \mathbb{R}^2 over the field \mathbb{R} under usual addition and scalar multiplication:

(i)
$$A = \{(a+2b, a+1) \mid a, b \in \mathbb{R}\}$$

(ii)
$$B = \{(a, a^2) \mid a \in \mathbb{R} \}$$

3.

- (a) Let U and V be vector spaces over a field F and $T: U \to V$ be a linear transformation. Prove that the kernel of T is a subspace of U.
 - (b) Let $M = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a, b, c, d \in \mathbb{R} \}$. Note that M is a vector space over the field \mathbb{R} under the usual matrix addition and scalar multiplication.

Let the mapping $T: M \to M$ be defined by $T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a+b & b \\ c & c+d \end{bmatrix}$.

Suppose $U = \{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} | a, b \in \mathbb{R} \}$.

- (i) Show that T is a linear transformation,
- (ii) Find the kernel of T.
- (iii) Is U an invariant subspace of the vector space M over the field \mathbb{R} under T? Prove your Answer.

4.

- (a) Define an isomorphism between vector spaces U and V over a field F.
- (b) Let U and V be vector spaces over a field F. Let $T:U\to V$ be a linear transformation onto V. Prove that T is an isomorphism if and only if

 $ker T = \{0\}$, where 0 is the additive identity of U

- (c) Define a basis of a vector space V over a field F.
- (d) Let U and V be vector spaces over a field F, $T:U\to V$ be an isomorphism and $S=\{u_1,u_2,\dots u_n\}$ be a basis of U. Prove that $T(S)=\{T(u_i)|u_i\in S\}$ is a basis of V.

- (a) Define linear independence and linear dependence of a non empty finite subset S of a vector space.
- (b) Let $S = \{P_1 = 1 x, P_2 = 5 + 3x 2x^2, P_3 = 1 + 3x x^2\}$ be a sub set of the vector space of all polynomials of degree at most 2 over \mathbb{R} . Is S linearly independent over the field \mathbb{R} ? Justify your answer.
- (c) Let U be a subspace of a vector space V over a field F, $T:U \to V$ be a linear transformation. Prove that $T(U) = \{T(u) | u \in U\}$ is a subspace of V.
- (d) Let U be a subspace of a vector space V over a field F, $T:U\to V$ be a linear transformation and $S=\{u_1,u_2,\ldots u_n\}$ be a linearly independent set of vectors in U. Is the set $T(S)=\{T(u_i)|u_i\in S\}$ always linearly independent? Justify your answer.

6.

(a) Let P_n be the vector space of polynomials of degree at most n over \mathbb{R} . In this space, with p and q arbitrary polynomials, we define

$$\langle p,q\rangle = \int_{0}^{1} p(x)q(x)dx$$

- (i) Show that P_n is a Euclidean space.
- (ii) Find the lengths of the polynomials of 2x and $1-2x^2$ in P_2 .
- (iii) Find the distance between the polynomials 2x and $1-2x^2$ in P_2 .
- Show that the three vectors $u_1 = (1, 2, 2)$, $u_2 = (1, -1, 2)$ and $u_3 = (1, 0, 1)$ form a basis for E^3 , the usual Euclidean three space. Construct an orthonormal basis for E^3 out of $\{u_1, u_2, u_3\}$ using the Gram-Schmidt process.