THE OPEN UNIVERSITY OF SRI LANKA
DEPARTMENT OF COMPUTER SCIENCE
B.Sc. DEGREE PROGRAMME: LEVEL 03
CPU1142- DATA STRUCTURES & ALGORITHMS
FINAL EXAMINATION – 2016/2017

DURATION:Two Hours (2 Hours)

Date: 09.01.2018

Time: 1.30p.m. -3.30 p.m.

Answer FOUR (4) Questions ONLY.

OUESTION 01

- 1) What are the two main types of recursions that can be used with functions? Explain each type with an example.
- 2) Write codes in C programming language to do the following.
 - a. Create a data structure to implement a **stack**. The structure should contain a variable to store the **top** position of the **stack** and an **array** to hold numeric data of type **int** in the **stack**. Declare a stack with the name "**mystack**".
 - b. Write a function in C to insert a data item into "mystack". Use void StackInsert(int x) as the function header (check stack overflow condition before you insert a data item).
 - c. Write a function in C to **delete** a data item from "**mystack**". Use **int StackDelete** 0 as the function header. (Check the stack underflow condition before you delete a data item).
- 3) Using big O notation, determine the running time of the following C program section. State any assumptions you make.

4) Clearly describe the tasks of the following C program section.

5) Define an "almost complete binary tree". Is the following tree an almost complete binary tree? Give reasons.

QUESTION 02

1) Show the adjacency-list representation of the following graph.

2)

a) Construct a binary search tree for the following set of integers.

60, 20, 100, 150, 80, 10, 50, 55, 05, 40, 90, 15, 70

- b) What will be the output when you traverse the above binary tree, which you constructed in part (a) above in the following orders?
 - i. Pre-order
 - ii. In-order
 - iii. Post-order
- c) Is the binary search tree you constructed in part (a) above a strictly binary tree?
- d) What are the **leaf** nodes of the binary search tree which you constructed in part (a) above?

- 3) Describe the following terms with respect to GRAPH data structure.
 - a) Degree of the vertex
 - b) Complete Graph
 - c) Weighted Graph
 - d) Directed Graph
- 4) State the three types of internal sorting algorithms.

QUESTION 03

- 1) Write a function in C programming language to implement the Selection Sort. Use void SelectionSort (int numbers[], int array_size) where the array named "numbers[]" has the elements to be sorted and "array_size" gives the number of elements.
- 2) What is the running time of the selection sort (use big O notation)?
- 3) What will be the output of the following function if we pass "5" as the value for n?

- 4) Write codes in C programming language to do the following.
 - a) Using pointer implementation of a queue, create a data structure of a queue.
 - b) Insert an element to the queue.

QUESTION 04

1) Represent the following expression by using a binary tree.

$$(A+B*C)$((D+E)*F)$$

2) Show the multi-list representation of the following graph.

- 3) Using the graph of part (2) above, show the order of vertices visited in the "Depth first" and "Breath first" traversals. Select "B" as the starting node.
- 4) Graphically show the steps of sorting the following data set by using the Bubble sort.

- 1								
ı	20	ו יכש	ro t	A-+	22	- 00		
	20	07	ו סכ ו	4/	2/	102	96 1	<u> </u>
1								_ ~~ I
٠								

QUESTION 05

- 1) What is Greedy Method and give one example for that?
- 2) Write codes in C programming language to do the following.
 - a) Using pointer implementation, create a data structure of a circular queue.
 - b) Insert an element to the circular queue.
- 3) Consider the following expression in Infix form and convert it into the Postfix form.—Clearly show the 7 steps required for the conversion.

(A+B)/C\$D-E/F*G\$H

4) Following is a function in C programming language for some operation.

```
void functionname()
{
    nodePtr *current, *first;
    current = last;

    if(current == NULL){
        return;
    }
    else if(current == current->next){
            free(current);
            last = NULL;
    }

    else{
        first = current->next;
            current->next = fist->next;
            free(first);
    }
}
```

By analyzing the above function in C programming language, answer the following questions.

- a) What is the data structure that this function belongs to?
- b) What type of implementation method is used to create the data structure that you mentioned in section (a)?
- c) Which type of operation can perform using the above function?

QUESTION 06

1) Using **big O** notation, determine the running time of the following C program section. State any assumptions you make.

2) Show the adjacency-list representation of the following graph.

3) Array representation of a binary tree is as follows.

- a) Draw the relevant binary tree according to the above array representation.
- b) Mention the degree of each node of the binary tree which you constructed in part (a) above?
- 4) Consider the running times O(f(n)) and O(g(n)) where

$$f(n) = n^3$$
 if n is even n^4 if n is odd

$$g(n) = n^6$$
 if n is even
 n^8 if n is odd

Consider that f(n) and g(n) are placed sequentially.

- a) Calculate the time complexity for both odd n and even n separately.
- b) What is the name of the rule that is required to calculate the time complexity?

*** All Rights Reserved ***