The Open University of Sri Lanka Department of Mathematics B. Sc/ B. Ed Degree Programme No Book Test - 2019/ 2020 Pure Mathematics – Level 05

PEU5301 - Ring Theory

Duration: One Hour

Date: 23.08.2020

Time: 10.30 a.m. - 11.30 a.m.

ANSWER All Questions

Total Marks = 100

Q1)

Consider the subring of $S = \left\{ \begin{pmatrix} a & 2b \\ b & a \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ of $M_2(\mathbb{Z})$ and the subring $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ of \mathbb{R} . Let $\varphi \colon S \to \mathbb{Z}[\sqrt{2}]$ be the mapping defined by

$$\varphi\left(\begin{pmatrix} a & 2b \\ b & a \end{pmatrix}\right) = a + b\sqrt{2}.$$

Prove that φ is a ring isomorphism by showing it is:

(a) a ring homomorphism, (b) one to one, and (c) onto.

30 marks

Q2)

- (i) Let R be a commutative ring with unity, and $a \in R$. Prove that < a > = R if and only a is a unit, where $< a > = \{b \in R : b = ar \text{ for some } r \in R\}$.
- (ii) Consider the ideal < 77, 91 > of \mathbb{Z} , where $< a, b > = \{ax + by: x, y \in \mathbb{Z}\}$. Show that < 77, 91 > is a principal ideal of \mathbb{Z} .

Q3)

Consider the two polynomials $p(x) = [2]x^2 + [1]$ and $q(x) = [4]x^2 + [5]$ in $\mathbb{Z}_6[x]$.

(a) Compute p(x) + q(x) and p(x)q(x).

20 marks

(b) Determine deg(p(x) + q(x)) and deg(p(x)q(x)).

10 marks