THE OPEN UNIVERSITY OF SRI LANKA B. Sc. DEGREE PROGRAMME 2019/2020 CYU5300/CMU3122 - ORGANOMETALLIC CHEMISTRY REGIONAL ASSIGNMENT TEST II (NDT) ASSIGNMENT TEST-II (NBT) DATE: 06th September 2019 TIME: 4.15 p.m.- 5.15 p.m. ගී ලංකා විවෘත විශ්වවිදා<u>කල</u>ක වනතුවර සුංශේෂීය මධාුක්දර්ගෙන වී හා අ EXAMINATION TREGIONAL CENTRE 06 SE ANSWER ALL QUESTIONS Mark a cross (X) over the ENGLISH LETTER that corresponds the most suitable answer on the given answer script. Any answer with more Man one cross will not be counted. ### PART A (45 marks) - 1. Pick the correct statement regarding an oxidative addition reaction. - a) Oxidation number of the metal is always increased by 2 units. - b) Coordination number of the metal is always increased by 2 units. - c) Coordinatively saturated metal centres cannot undergo oxidative addition reaction. - d) Oxidative addition is facile if the metal centre is coordinatively saturated. - e) Oxidative addition of MeI to Vaska's complex is trans. - 2. Which one is an example for 2e-oxidative-addition reaction? - a) $[Co_2(CO)_8] + H_2 \rightarrow 2 [HCo(CO)_4]$ - b) 2 $[Co(CN)_5]^{3-}$ + MeI \rightarrow $[MeCo(CN)_5]^{3-}$ + $[CoI(CN)_5]^{3-}$ - e) [Ni(CO)₄] + ICH=CH₂ \rightarrow [(OC)₃Ni(η^2 -CH₂=CH₂)]I + CO - d) $[Ni(PEt_3)_3] + PhI \rightarrow [Ni(Ph)(I)(PEt_3)_2] + PEt_3$ - e) $[MeMn(CO)_5] + CF_2 = CF_2 \rightarrow [Mn(CF_2CF_2Me)(CO)_5]$ - 3. Catalyst used in Union Carbide process is - a) [Co₂(CO)₈] - b) [RhCl(PPh₃)₃] - c) [RhH(CO)(PPh₃)₂] - d) [HCo(CO)₄] - e) [RuHCl(PPh₃)₃] - 4. Which one is an example of an insertion reaction? - a) $[Fe(CO)_5] + CF_2 = CF_2 \rightarrow [(OC)_4 Fe(CF_2 = CF_2)] + CO$ - b) $[MeMn(CO)_5] + CF_2=CF_2 \rightarrow [Mn(CF_2CF_2Me)(CO)_5]$ - c) $[Fe(CO)_5] + 2 CF_2 = CF_2 \rightarrow [(OC)_4 Fe(C_4F_8)] + CO$ - d) $[Pt(PPh_3)_4] + PhI \rightarrow [Pt(Ph)(I)(PPh_3)_2] + 2 PPh_3$ - e) $[(\eta^1 C_3H_5)Mn(CO)_5] \rightarrow [(\eta^3 C_3H_5)Mn(CO)_3] + 2 CO$ - 5. Electrophilic attack of Br2 on a coordinated CH2=CH2 is facilitated if - a) the metal is coordinatively unsaturated. - b) the metal is in high oxidation state. - c) the metal coordinated to good σ-donor ligands. - d) electron withdrawing groups are on coordinated ligands. - e) none of the above statements is true. | 6. [Fe(CO)s] can be conve
a) HCl b) H | rted into [HFe(CO)
I ₂ c) OH ⁻ | 4] by reacting
d) H | it with
e) HOAc | |---|--|--|--| | 7. What is the major prod a) AlClMe ₂ (PPh ₃): c) Al[RhMe ₂ (PPh ₃) e) [AlCl(PPh ₃) ₃] + | s b) [RhN
)2] d) [RhN | 1e(PPh3)31 | Cl(PPh ₃) ₃] and AlMe ₃ ? | | 8. Which metal carbonyl ha a) [Fe ₃ (CO) ₁₂] d) [Re ₂ (CO) ₁₀] | as got bridging car
b) [Ir ₄ (CO) ₁₂]
e) [Os ₃ (CO) ₁₂] | c) [Ruat | (CO)12] | | 9. α-Hydride abstraction co a) trans-[NiBr(OMe c) [EtOCo(CO)₃] e) [(η⁵-C₅H₅)Ta(CI | e)(PMe ₃) ₂] b |) [Ni(PMe3)4]
) [PhMn(CO)4] | | | 10. What is the product form a) [MeMn(CO)₅] d) [Mn(η³-allyl)(CO)₄] | b) [Mn(n²-allyl) | $(CO)_{c1}$ at | warmed in hexane?
[Mn(η¹–allyl)(CO)₂] | | 11. How many IR bands doc
a) 1 b) 2 | es [V(CO) ₆] ⁻ show(c) 3 | d) 4 | e) 5 | | 12. Consider the following street (i) The carbonyl street higher than those (ii) CO stabilizes the (iii) The back bonding | etching frequencies
tof triply bridging of
metal centres in hi | of doubly bridgones.
gher oxidation | ging metal carbonyls are
states. | | The correct statement/s (a) (i) only, (d) (i) & (iii) only, | <i>is/are</i>
b) (i) & (ii) only | c) (ii) & (iii | | | 13. The order of ease of hydrochydrochydriaeth (A); control cis-CH ₃ CH=CH (B); control cis-CH ₃ CH=CH (B); control cis-CH ₃ CH=CH (C); control cis-CH ₃ CH=CH (C); control cis-CH ₃ CH=CH ₄ (C) | cyclohexene (B) ;
CH3 (C) <i>trans</i> -CH | I₃CH=CHCH3 (
≤B < A c) / | (D); | | 14. Which one of the followi
a) [Ni(P{OPh}3)4]
d) [HCo(CO)4] | ng catalysts is used
b) [RuCl ₂ (
e) [RhCl(F | PPh3)3] c)[| nation of butadiene?
Pd(CN)2(NCPh)2] | | 5. The component not used a) MeI b) MeCO | or formed in the M | Nonsanto proces | ss is | & Como Flesson Water Bancon Who was a second of the second **B** 800 60 ON SEP 2010) KVNIDA STEDIONINE CHARLETE Lake Omith charamana, on Rui Parky WANTA WILLIAM #### THE OPEN UNIVERSITY OF SRI LANKA B.Sc. Degree Programme - Level Assignment Test II - 2019/2020 CYU5300/CMU3122 - Organometallic Chemistry MCQ Answer Sheet: Mark a cross (x) over the ENGLISH LETTER that corresponds to the most suitable answer. | Reg. No. | Reg. No. | |----------|----------| |----------|----------| | , , | Marks | |---------|-------| | Part A | | | Part B | | | Total % | | | Answers | No. | Marks | |---------|-----|-------| | Correct | | | | Wrong | | | | 1 | a | b | С | ď | e | 2 | a | b | С | d | e | 3 | a | b | с | d | e | 4 | a | b | c | d | e | | |----|---|---|---|---|---|----|---|---|---|---|---|-----|---|---|---|---|---|----|---|---|---|---|---|-------| E3721 | | 5 | a | b | с | d | е | 6 | a | b | С | d | e | 7 | a | b | С | d | e | 8 | a | b | c | d | e | 9 | a | b | С | d | е | 10 | a | b | С | đ | e | 11 | a | b | С | d | e | 12 | a | b | С | d | e | 13 | а | b | С | d | e | 14 | a | b | c | d | e | 1.5 | а | b | С | d | e | | | | | | | - | ### Part B (55 marks) | Answer all the questions in the space provide | d. Attached sheets will not be graded. | |---|--| |---|--| - 1. (a) (i) mer, cis-[lrIMe₂(CO)₃] (A) undergoes reductive elimination to give an organic molecule (B) and the 16e-complex (C). Identify (B) and (C). - (ii) Draw the structures of the other two isomers of (A). (b) MeBr oxidatively adds to [RhBr₂(CO)₂]⁻ to give (P). (P) in the presence of CO gives the acetyl complex (Q). (Q) reductively eliminates (R) to regenerate [RhBr₂(CO)₂]⁻. Identify (P), (Q) and (R). | (P) | | ٠. | | | | • | | • | | | | | | | | | | | | • | | • | | | | | | | | | | | | | | | | | | • | |--------------|--|----|--|--|--|---|--|---|--|--|--|--|--|--|--|--|--|--|--|---|--|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---| |--------------|--|----|--|--|--|---|--|---|--|--|--|--|--|--|--|--|--|--|--|---|--|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---| - (c) Identify the products of the following reactions using the hint given in the brackets. - (i) [Fe(PMe₃)₄] → 18e-complex (K) (cyclometallation) - (ii) [MeMn(CO)₅] + 13 CO \rightarrow 18e-complex (L) (migratory insertion) - (iii) $[(\eta^5-Cp)(OC)_2Fe=CMe_2]^+$ + LiPh \rightarrow 18c-complex (M) (nucleophilic addition) (K) (L) (\mathbf{M}) | (d) | What is the active catalyst used in the | |-----|---| | | (i) Monsanto Process | | | (ii) Roelen Process | | (e) | Write on the dotted line, the compound/reagent(s) which can be used to carry ou the following conversions. | | | (i) $[(\eta^5 - Cp)(OC)_2 Ru(\eta^1 - C_3 H_5)] \rightarrow [(\eta^5 - Cp)(OC)_2 Ru(\eta^2 - CH_2 = CHMe)]^+$ | | | (ii) $[(\eta^5-Cp)_2ZrCl_2] \rightarrow [(\eta^5-Cp)_2Zr(C\equiv CPh)_2]$ | (f) $[(\eta^5-Cp)Co(CH_2CH_3)(PPh_3)]^+$ undergoes β -hydride abstraction to give the 16e-complex (Z) and a molecule of ethene. Draw the **structure** of (Z). . 00189 | Name: | | | |
٠. | ٠. |
 |
٠. | | • | |
 | ٠. | | | | | | ٠. | |
٠. | | | | | ٠. |
 | | |--------------|----|-------|-------|--------|----|------|--------|----|----|----|--------|----|----|---|----|----|-----|----|----|--------|---|-----|---|----|----|------|--| | Registration | No | : | • • • |
٠. | ٠. |
 |
 | | | |
 | | | | | | | | |
 | | • • | • | | |
 | | | Address: | • | | |
 | |
 | | | | |
 | | | • | | | • • | | | | • | | | ٠. | |
 | | | | | | |
 | ٠. | |
٠. | ٠. | | |
٠. | ٠. | - | | | | | | |
٠. | | | | ٠. | |
 | | | | | • • • | |
 | |
 | | | | | | | | | ٠. | ٠. | | | ٠. | • • | ٠ | | | | |
 | | | | | | |
 | |
 | | | ٠. | ٠, |
 | ٠. | ٠. | | | | | | ٠. | | ٠ | | | | |
 | | # Answer Guide ORGANOMETALLIC CHEMISTRY CYU5300 CAT-2 – 2019/2020 ## Part A - MCQ Answers 1. e 2. d 3. c 4. b 5. c 6. c 7.b 8. a 9. e 10. d 11. a 12. a 13. a 14. a 15. e #### Part B 1) a) i) (B) CH₃-CH₃ (C) [lrl(CO)₃] OR (B) Mel, (C) [lrMe(CO)₃] ii) - b) $(P) = [RhBr_3(Me)(CO)_2]^T$ - $(\mathbf{Q}) = [\mathsf{Rh}(\mathsf{COMe})(\mathsf{CO})_2 \mathsf{Br}_3]^\mathsf{T}$ - \cdot (R) = MeCOBr c) - d) (i) $[Rh(CO)_2I_2]^{-}$ - (ii) [HCo(CO)₃] - e) (i) HX (X=CI, BF₄) etc ii = Na(C=CPh) f)