THE OPEN UNIVERSITY OF SRI LANKA B. Sc. DEGREE PROGRAMME 2019/2020 CYU5300/CMU3122 - ORGANOMETALLIC CHEMISTRY REGIONAL ASSIGNMENT TEST II (NDT) ASSIGNMENT TEST-II (NBT)

DATE: 06th September 2019

TIME: 4.15 p.m.- 5.15 p.m.

ගී ලංකා විවෘත විශ්වවිදා<u>කල</u>ක වනතුවර සුංශේෂීය මධාුක්දර්ගෙන වී හා අ

EXAMINATION

TREGIONAL CENTRE

06 SE

ANSWER ALL QUESTIONS

Mark a cross (X) over the ENGLISH LETTER that corresponds the most suitable answer on the given answer script. Any answer with more Man one cross will not be counted.

PART A (45 marks)

- 1. Pick the correct statement regarding an oxidative addition reaction.
 - a) Oxidation number of the metal is always increased by 2 units.
 - b) Coordination number of the metal is always increased by 2 units.
 - c) Coordinatively saturated metal centres cannot undergo oxidative addition reaction.
 - d) Oxidative addition is facile if the metal centre is coordinatively saturated.
 - e) Oxidative addition of MeI to Vaska's complex is trans.
- 2. Which one is an example for 2e-oxidative-addition reaction?
 - a) $[Co_2(CO)_8] + H_2 \rightarrow 2 [HCo(CO)_4]$
 - b) 2 $[Co(CN)_5]^{3-}$ + MeI \rightarrow $[MeCo(CN)_5]^{3-}$ + $[CoI(CN)_5]^{3-}$
 - e) [Ni(CO)₄] + ICH=CH₂ \rightarrow [(OC)₃Ni(η^2 -CH₂=CH₂)]I + CO
 - d) $[Ni(PEt_3)_3] + PhI \rightarrow [Ni(Ph)(I)(PEt_3)_2] + PEt_3$
 - e) $[MeMn(CO)_5] + CF_2 = CF_2 \rightarrow [Mn(CF_2CF_2Me)(CO)_5]$
- 3. Catalyst used in Union Carbide process is
 - a) [Co₂(CO)₈]
- b) [RhCl(PPh₃)₃]
- c) [RhH(CO)(PPh₃)₂]

- d) [HCo(CO)₄]
- e) [RuHCl(PPh₃)₃]
- 4. Which one is an example of an insertion reaction?
 - a) $[Fe(CO)_5] + CF_2 = CF_2 \rightarrow [(OC)_4 Fe(CF_2 = CF_2)] + CO$
 - b) $[MeMn(CO)_5] + CF_2=CF_2 \rightarrow [Mn(CF_2CF_2Me)(CO)_5]$
 - c) $[Fe(CO)_5] + 2 CF_2 = CF_2 \rightarrow [(OC)_4 Fe(C_4F_8)] + CO$
 - d) $[Pt(PPh_3)_4] + PhI \rightarrow [Pt(Ph)(I)(PPh_3)_2] + 2 PPh_3$
 - e) $[(\eta^1 C_3H_5)Mn(CO)_5] \rightarrow [(\eta^3 C_3H_5)Mn(CO)_3] + 2 CO$
- 5. Electrophilic attack of Br2 on a coordinated CH2=CH2 is facilitated if
 - a) the metal is coordinatively unsaturated.
 - b) the metal is in high oxidation state.
 - c) the metal coordinated to good σ-donor ligands.
 - d) electron withdrawing groups are on coordinated ligands.
 - e) none of the above statements is true.

6. [Fe(CO)s] can be conve a) HCl b) H	rted into [HFe(CO) I ₂ c) OH ⁻	4] by reacting d) H	it with e) HOAc
7. What is the major prod a) AlClMe ₂ (PPh ₃): c) Al[RhMe ₂ (PPh ₃) e) [AlCl(PPh ₃) ₃] +	s b) [RhN)2] d) [RhN	1e(PPh3)31	Cl(PPh ₃) ₃] and AlMe ₃ ?
8. Which metal carbonyl ha a) [Fe ₃ (CO) ₁₂] d) [Re ₂ (CO) ₁₀]	as got bridging car b) [Ir ₄ (CO) ₁₂] e) [Os ₃ (CO) ₁₂]	c) [Ruat	(CO)12]
 9. α-Hydride abstraction co a) trans-[NiBr(OMe c) [EtOCo(CO)₃] e) [(η⁵-C₅H₅)Ta(CI 	e)(PMe ₃) ₂] b) [Ni(PMe3)4]) [PhMn(CO)4]	
 10. What is the product form a) [MeMn(CO)₅] d) [Mn(η³-allyl)(CO)₄] 	b) [Mn(n²-allyl)	$(CO)_{c1}$ at	warmed in hexane? [Mn(η¹–allyl)(CO)₂]
11. How many IR bands doc a) 1 b) 2	es [V(CO) ₆] ⁻ show(c) 3	d) 4	e) 5
12. Consider the following street (i) The carbonyl street higher than those (ii) CO stabilizes the (iii) The back bonding	etching frequencies tof triply bridging of metal centres in hi	of doubly bridgones. gher oxidation	ging metal carbonyls are states.
The correct statement/s (a) (i) only, (d) (i) & (iii) only,	<i>is/are</i> b) (i) & (ii) only	c) (ii) & (iii	
13. The order of ease of hydrochydrochydriaeth (A); control cis-CH ₃ CH=CH (B); control cis-CH ₃ CH=CH (B); control cis-CH ₃ CH=CH (C); control cis-CH ₃ CH=CH (C); control cis-CH ₃ CH=CH ₄ (C); control cis-CH ₄ (C)	cyclohexene (B) ; CH3 (C) <i>trans</i> -CH	I₃CH=CHCH3 (≤B < A c) /	(D);
14. Which one of the followi a) [Ni(P{OPh}3)4] d) [HCo(CO)4]	ng catalysts is used b) [RuCl ₂ (e) [RhCl(F	PPh3)3] c)[nation of butadiene? Pd(CN)2(NCPh)2]
5. The component not used a) MeI b) MeCO	or formed in the M	Nonsanto proces	ss is

& Como Flesson Water Bancon Who was a second of the second **B** 800 60 ON SEP 2010) KVNIDA STEDIONINE CHARLETE Lake Omith charamana, on Rui Parky

WANTA WILLIAM

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc. Degree Programme - Level

Assignment Test II - 2019/2020 CYU5300/CMU3122 - Organometallic Chemistry

MCQ Answer Sheet: Mark a cross (x) over the ENGLISH LETTER that corresponds to the most suitable answer.

Reg. No.	Reg. No.
----------	----------

, ,	Marks
Part A	
Part B	
Total %	

Answers	No.	Marks
Correct		
Wrong		

1	a	b	С	ď	e	2	a	b	С	d	e	3	a	b	с	d	e	4	a	b	c	d	e	
																								E3721
5	a	b	с	d	е	6	a	b	С	d	e	7	a	b	С	d	e	8	a	b	c	d	e	
9	a	b	С	d	е	10	a	b	С	đ	e	11	a	b	С	d	e	12	a	b	С	d	e	
13	а	b	С	d	e	14	a	b	c	d	e	1.5	а	b	С	d	e							-

Part B (55 marks)

Answer all the questions in the space provide	d. Attached sheets will not be graded.
---	--

- 1. (a) (i) mer, cis-[lrIMe₂(CO)₃] (A) undergoes reductive elimination to give an organic molecule (B) and the 16e-complex (C). Identify (B) and (C).
 - (ii) Draw the structures of the other two isomers of (A).

(b) MeBr oxidatively adds to [RhBr₂(CO)₂]⁻ to give (P). (P) in the presence of CO gives the acetyl complex (Q). (Q) reductively eliminates (R) to regenerate [RhBr₂(CO)₂]⁻. Identify (P), (Q) and (R).

(P)		٠.				•		•												•		•																		•
--------------	--	----	--	--	--	---	--	---	--	--	--	--	--	--	--	--	--	--	--	---	--	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

- (c) Identify the products of the following reactions using the hint given in the brackets.
- (i) [Fe(PMe₃)₄] → 18e-complex (K) (cyclometallation)
- (ii) [MeMn(CO)₅] + 13 CO \rightarrow 18e-complex (L) (migratory insertion)
- (iii) $[(\eta^5-Cp)(OC)_2Fe=CMe_2]^+$ + LiPh \rightarrow 18c-complex (M) (nucleophilic addition)

(K)

(L)

 (\mathbf{M})

(d)	What is the active catalyst used in the
	(i) Monsanto Process
	(ii) Roelen Process
(e)	Write on the dotted line, the compound/reagent(s) which can be used to carry ou the following conversions.
	(i) $[(\eta^5 - Cp)(OC)_2 Ru(\eta^1 - C_3 H_5)] \rightarrow [(\eta^5 - Cp)(OC)_2 Ru(\eta^2 - CH_2 = CHMe)]^+$
	(ii) $[(\eta^5-Cp)_2ZrCl_2] \rightarrow [(\eta^5-Cp)_2Zr(C\equiv CPh)_2]$

(f) $[(\eta^5-Cp)Co(CH_2CH_3)(PPh_3)]^+$ undergoes β -hydride abstraction to give the 16e-complex (Z) and a molecule of ethene. Draw the **structure** of (Z).

. 00189

Name:				 ٠.	٠.	 	 ٠.		•		 	٠.						٠.		 ٠.					٠.	 	
Registration	No	:	• • •	 ٠.	٠.	 	 				 									 		• •	•			 	
Address:	•			 		 					 			•			• •				•			٠.		 	
				 	٠.		 ٠.	٠.			 ٠.	٠.	-							 ٠.				٠.		 	
		• • •		 		 									٠.	٠.			٠.	• •	٠					 	
				 		 			٠.	٠,	 	٠.	٠.						٠.		٠					 	

Answer Guide ORGANOMETALLIC CHEMISTRY CYU5300 CAT-2 – 2019/2020

Part A - MCQ Answers

1. e 2. d 3. c 4. b 5. c 6. c 7.b 8. a 9. e 10. d 11. a 12. a 13. a 14. a 15. e

Part B

1) a) i) (B) CH₃-CH₃ (C) [lrl(CO)₃] OR (B) Mel, (C) [lrMe(CO)₃] ii)

- b) $(P) = [RhBr_3(Me)(CO)_2]^T$
 - $(\mathbf{Q}) = [\mathsf{Rh}(\mathsf{COMe})(\mathsf{CO})_2 \mathsf{Br}_3]^\mathsf{T}$
 - \cdot (R) = MeCOBr

c)

- d) (i) $[Rh(CO)_2I_2]^{-}$
 - (ii) [HCo(CO)₃]
- e) (i) HX (X=CI, BF₄) etc ii = Na(C=CPh)

f)

