| DATE: 10 th August 201 | 9 Durau | on = 1 n | 1 11/11 | 5 . 9.00 a.iii | 10.00 4.111. | |--|--|---|--|--|-------------------------| | ANSWER ALL QUEST
Mark a cross (X) over the
given answer script. A | e English lette | r that corresp
more than or | onds to mos
ne cross will | t suitable ansv | ver on the | | PART A (45 marks) | | | | | | | 1. Consider the followin (i) cyclobutene The <i>dihapto</i> ligand/s a) (iii) only. d) (ii) and (iii) or | (ii) ving
is/are | yl (ii | i) ethyne
ven. | c) (i) and (iii) | only. | | b) [Ni(PEt ₃) ₃] | $\begin{array}{l} \text{In}(\text{CO})_5] \rightarrow \\ + \text{ Phl} \rightarrow \\ + \text{ I}_2 \rightarrow \\ \text{[OsI_2]} + \text{CF}_2 = \text{CF}_2 \end{array}$ | $[(\eta^3-C_3H_5)M$ Ni(Ph)(I)(PEt
(CO) ₄] + CO
\rightarrow [Mn(CI | n(CO) ₄] + 0
₃) ₂] + PEt ₃
)
⁷ ₂ CF ₂ H)(CO |)5] | | | 3. Consider the followin (i) MeCHO and (ii) Ar and HCl (iii) NO ⁺ and N ₂ The correct statement a) (iii) only d) (ii) & (iii) on | MeNO are not
are isoelectroni
are isoelectron
t/s is/are
b) (i) & | c.
iic.
& (ii) only | | (iii) onły | | | 4. An L_3 type ligand is a) η^4 -C ₆ H ₆ | b) η²-C ₆ H ₆ | c) cyclopen | tadienyl | d) η ⁶ -C ₇ H ₈ | e) η³-C₃H₅ ⁻ | | 5. The IUPAC name of a) (η⁶-benzene)can b) Carbonylfluoro c) (η⁶-Benzene)can d) (Hexahaptobene) e) Fluorocarbonyl | bonylfluorocol
phenylcobalt
rbonylfluoroco
zene)carbonylc | oaltate
balt
obalt fluoride | | | | | 6. What is the Valence (Group number of a) 16 | | ot (VEC) of R | h in [RhI(η ^l
d) 21 | -C ₅ H ₅)(η ⁶ -C ₆ H
e) 15 | 6)]? | | 7. According to the cov a) σ -allyl | , | stable 4e-dor
c) C≡O | or ligand is
d) π–allyl | e) C ₄ 3 | H ₄ | | 8. Acc | ording to t | the ionic mod | el, the <mark>coordina</mark> | tion number a | and the oxidation | number of Co | |---------|--|--|--|---|--|---------------| | in | [CoCl(n3- | C_5H_5)(η^3 - C_5H_5 | ls)] (Group num | ber of Co is 9) | are | | | | a) 6, +2 | b) 6, +3 | c) 7, +1 | d) 7, +2 | e) 7, +3 | | | | (ii) It ha
(iii) It do
(iii) It is
e correct s
a) '(iii) or | s 3 geometric
des not show of
a coordinative
statement/s is/
ally. | al isomers. optical isomeris ely saturated co 'are b) (i) & (ii) or | m.
mpound.
nly. c) (i |)] (Group no. of)
) & (iii) only. | Fe = 8). | | | G) (II) & | (iii) only. | e) (i), (ii) & (i | 11). | | | | | (i) Reduc
(ii) The tw
elimin
(iii) [PdM
(dp
The correc
a) (ii) | vo groups to bation takes pec(dppe)] elin
pe = PPh2CH2
t statement/secnly | on is enhanced lose eliminated mulace. Ininates ethane sech ₂ PPh ₂ is a b | lower than [Pd dentate ligand] ly c) (i) & | 1 the <i>cis-</i> position
Me2(PPh3)21. | s before | | 11 The | etrongest | - dama 11. | 1 ' | | | | | | NMe ₃ | σ-donor ligan
b) CO | c) BMe ₃ | d) CHCl3 | e) PF ₃ | | | 12. Wha | a) It can a | rue about dini
act as a <i>dihapi</i>
act as a bridgi
weak π-accept | to ligand.
ng ligand. | b) It can act a d) It is a bette | as a 4e-donor.
er σ-donor than C | co. | | 15 ti | a) It is a b) The or c) The pl | ne above com
tetrahedral co
xidation numblane of CF ₂ =C
ot symmetrica | plex? (Group nu
emplex.
er of Pt is +3.
F ₂ is perpendic | ımber of Pt is | | ng statements | | | a) It can a
b) It canno | ue about the count as a monodot act as a 3e-count carbon is sp | | | | | b) $$[Pt(PEt_3)_3] + Phl \rightarrow [Pt(Ph)(1)(PEt_3)_2] + PEt_3$$ e) It can form Fischer carbenes with Group 4 metals. c) $[MeMn(CO)_5] + CO \rightarrow [Me(COMe)(CO)_5]$ d) $[Ni(PEt_3)_3]$ + $IFC=CF_2 \rightarrow [NiI(PEt_3)_2(CF=CF_2)] + PEt_3$ e) $2[Co(CN)_5]^3 + H_2 \rightarrow 2[HCo(CN)_5]^{3-}$ d) It can form a metal carbon double bond. 15. Which is not an oxidative addition/coupling reaction ### THE OPEN UNIVERSITY OF SRI LANKA B.Sc. Degree Programme - Level 5 # Assignment Test I - 2019/2020 CYU5300/CMU3122 - Organometallic Chemistry MCQ Answer Sheet: Mark a cross (\times) over the English Letter that corresponds to the most suitable answer. | Reg. No. | | | |----------|--|--| FOR EXAMINER'S USE ONLY | | | | | | | | | | | | |-------------------------|-----|-------|--|--|--|--|--|--|--|--|--| | Answers | No. | Marks | | | | | | | | | | | Correct | | | | | | | | | | | | | Wrong | | | | | | | | | | | | | Total | | | | | | | | | | | | #### Part B (55 marks) Answer all the questions in the space provided. Attached sheets will not be graded. - 1. (a) Give the IUPAC name for [CoH(Br)(CH=CH₂)(η^5 -C₅H₅)]. - (b) Draw the structure of [ReH(Br)(η^1 -CH₂CH=CH₂)(η^5 -C₅H₅)]. - (c) Determine the VEC of Re in [ReBr₂(Me)(η¹-CH₂CH=CH₂)(η⁵-C₅H₅)] (A) using **ionic model**. (Indicate your break down; Group number of Re is 7) - (d) Determine the coordination number of Re in (A). - (e) **Draw** the **structures** of the three **geometrical** isomers of [RuBr₂(dppe)(CO)₂] (B). dppe = PPh₂CH₂CH₂PPh₂ is a bidentate ligand. (f) Oxidative addition of MeI is **more facile** to [RhCl₂(PEt₃)₂]⁻ (**C**) than [RhCl₂(CO)₂]⁻ (**D**). Briefly explain. - (g) Write the molecular formulae or draw the structures of the major product of the following reactions using the hint given in brackets. - (i) trans-[IrCl(CO)(PPh₃)₂] + O₂ \rightarrow (E) (oxidative addition) (ii) cis-[PtCl(Et)(PMe₃)₂] $\xrightarrow{\Delta}$ (F) (β -H abstraction, 18e-complex) (iii) trans-[IrCl(CO)(PPh₃)₂] + H-C \equiv C-H \rightarrow (G) (association, 18e-complex) | Name: | | • • | | | • | | ٠. | | • | ٠. | | | | ٠. | ٠. | | |
 | ٠. | | • • | | ٠. | • • | | | ٠. |
٠. | |--------------|-----|-----|----|----|----|----|----|-----|----|-----|-----|----|----|----|-----|----|----|--------|----|----|-----|---|----|-----|-----|----|-----|---------| | Registration | No: | ٠. | •• | | | | | | | | . , | | | | ٠, | | |
 | | | | | | | ٠. | | ٠., |
 | | Address: | | | | | | | | | ٠. | ٠. | •• | ٠. | | | ٠. | | |
 | | | ٠. | • | | | • • | ٠. | |
•• | | | | | ٠. | ٠. | | | | • • | | • • | | ٠. | | | • • | ٠. | |
٠. | ٠. | | ` | | ٠. | | | | |
••• | | | ••• | ٠. | | | ٠. | ٠. | | | | | | | ٠. | | | | ٠. |
٠, | • | ٠. | | | | | | | ٠. |
 | ## Answer Guide ORGANOMETALLIC CHEMISTRY CYU5300 CAT-1 – 2019/2020 ### Part A - MCQ Answers 1. c 2. a 3. d 4. d 5. c 6. b 7. e 8. b 9, e 10. d 11. a 12. d 13. c 14. e 15. c #### Part B a) Bromo(η⁵-cyclopentadienyl)(ethenyl)hydrocobalt or bromo(η⁵-cyclopentadienyl)hydrovinylcobalt b) c) $$2e (Re^{5+}) + 4e (2 \times Br^{-}) + 2e (Me^{-}) + 2e (\eta^{1}-allyl) + 6e (Cp^{-}) = 16e$$ d) C.N = number of electron pairs donated $2 (2xBr^{-}) + 1 (Me^{-}) + 1 (\eta^{1}-allyl) + 3 (\eta^{5}-Cp^{-}) = 7$ e) $$Ph_{2} P CO Ph_{2} P CO Ph_{2} P$$ f) Both compounds are Rh(I) and square-planar; Electron donor ability PEt₃ > CO; Therefore, Rh(I) centre in (C) is electron richer than that of (D); thus, ability to undergo oxidative addition is (C) > (D). 1 g) I. (E) = [IrCl(CO)($$\eta^2$$ -O₂)(PPh₃)₂] II. (F) = [PtCl(H)($$\eta^2$$ -CH₂=CH₂)(PMe₃)₂] III. (G) = [IrCl(CO)($$\eta^2$$ -HC \equiv CH)(PPh₃)₂]