

THE OPEN UNIVERSITY OF SRI LANKA 0.6 SEP B. Sc. DEGREE PROGRAMME 2019/2020 CYU5300/CMU3122 - ORGANOMETALLIC CHEMISPEN UNIVERSITY RANDY REGIONA ASSIGNMENT TEST-II (NBT)

S Como Barr Bolderoca

Droped Book & Delegrone Company Company

DATE: 06th September 2019

TIME: 4.15 p.m.- 5.15 p.m.

ANSWER ALL QUESTIONS

Mark a cross (X) over the ENGLISH LETTER that corresponds most suitable answer on the given answer script. Any answer with mort man one cross will not be counted.

PART A (45 marks)

- 1. Pick the correct statement regarding an oxidative addition reaction.
 - a) Oxidation number of the metal is always increased by 2 units.
 - b) Coordination number of the metal is always increased by 2 units.
 - c) Coordinatively saturated metal centres cannot undergo oxidative addition reaction.
 - d) Oxidative addition is facile if the metal centre is coordinatively saturated.
 - e) Oxidative addition of MeI to Vaska's complex is trans.
- 2. Which one is an example for 2e-oxidative-addition reaction?
 - a) $[Co_2(CO)_8] + H_2 \rightarrow 2 [HCo(CO)_4]$
 - b) $2 [Co(CN)_5]^{3-} + MeI \rightarrow [MeCo(CN)_5]^{3-} + [Col(CN)_5]^{3-}$
 - c) $[Ni(CO)_4] + ICH=CH_2 \rightarrow [(OC)_3Ni(\eta^2-CH_2=CH_2)]I + CO$
 - d) $[Ni(PEt_3)_3] + PhI \rightarrow [Ni(Ph)(I)(PEt_3)_2] + PEt_3$
 - e) $[MeMn(CO)_5] + CF_2=CF_2 \rightarrow [Mn(CF_2CF_2Me)(CO)_5]$
- 3. Catalyst used in Union Carbide process is
 - a) $[Co_2(CO)_8]$
- b) [RhCl(PPh₃)₃]
- c) [RhH(CO)(PPh₃)₂]

- d) [HCo(CO)₄]
- e) [RuHCl(PPh₃)₃]
- 4. Which one is an example of an insertion reaction?
 - a) $[Fe(CO)_5] + CF_2 = CF_2 \rightarrow [(OC)_4 Fe(CF_2 = CF_2)] + CO$
 - b) $[MeMn(CO)_5] + CF_2=CF_2 \rightarrow [Mn(CF_2CF_2Me)(CO)_5]$
 - c) $[Fe(CO)_5] + 2 CF_2=CF_2 \rightarrow [(OC)_4Fe(C_4F_8)] + CO$
 - d) $[Pt(PPh_3)_4] + Phl \rightarrow [Pt(Ph)(I)(PPh_3)_2] + 2 PPh_3$
 - e) $[(\eta^{1}-C_{3}H_{5})Mn(CO)_{5}] \rightarrow [(\eta^{3}-C_{3}H_{5})Mn(CO)_{3}] + 2 CO$
- 5. Electrophilic attack of Br₂ on a coordinated CH₂=CH₂ is facilitated if
 - a) the metal is coordinatively unsaturated.
 - b) the metal is in high oxidation state.
 - c) the metal coordinated to good σ -donor ligands.
 - d) electron withdrawing groups are on coordinated ligands.
 - e) none of the above statements is true.

6. [Fe(CO) ₅] can be converted a) HCl b) H ₂		by reacting d) H ⁻	it with e) HOAc
7. What is the major produ a) AlClMe ₂ (PPh ₃) ₃ c) Al[RhMe ₂ (PPh ₃) e) [AlCl(PPh ₃) ₃] +	b) [RhMe 2]	$(PPh_3)_3$	Cl(PPh ₃) ₃] and AlMe ₃ ?
8. Which metal carbonyl ha a) [Fe ₃ (CO) ₁₂] d) [Re ₂ (CO) ₁₀]	s got bridging c arbo b) [[r ₄ (CO) ₁₂] e) [Os ₃ (CO) ₁₂]	onyl ligands? c) [Ru ₃	(CO) ₁₂]
 9. α-Hydride abstraction cou a) trans-[NiBr(OMe] c) [EtOCo(CO)₃] e) [(η⁵-C₅H₅)Ta(CH)(PMe ₃) ₂] b) [d) {	Ni(PMe _{3)4]} PhMn(CO)4]	
 10. What is the product form a) [MeMn(CO)₅] d) [Mn(η³–allyl)(CO)₄] 	b) [Mn(n²-allvl)(C	$(O)_{5}$	warmed in hexane?) [Mn(η ¹ allyl)(CO)2]
11. How many IR bands doe a) 1 b) 2	s [V(CO) ₆] ⁻ show? c) 3	d) 4	e) 5
(ii) CO stabilizes the	tching frequencies o of triply bridging or metal centres in higl	f doubly brid les. ner oxidation	
(iii) The back bondin The correct statement/s		O bond strer	igth.
a) (i) only. d) (i) & (iii) only.	b) (i) & (ii) only.	c) (ii) & (ii ven.	ii) only.
13. The order of ease of hydr CH ₂ =CH ₂ (A); c cis-CH ₃ CH=CHC a) D < C < B < A d) B < D < C < A	yclohexene (B); CH_3 (C) $trans$ - CH_3 b) $C < D < 1$	CH=CHCH ₃ B < A c)	
14. Which one of the followin a) [Ni(P{OPh} ₃) ₄] d) [HCo(CO) ₄]	ng catalysts is used f b) [RuCl ₂ (P e) [RhCl(PP	Ph ₃) ₃] c)	nation of butadiene? [Pd(CN) ₂ (NCPh) ₂]
15. The component not used a) MeI b) MeCOI		onsanto proce d) HI — e)	

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc. Degree Programme - Level 5

Assignment Test II - 2019/2020 CYU5300/CMU3122 - Organometallic Chemistry

MCQ Answer Sheet: Mark a cross (x) over the ENGLISH LETTER that corresponds to the most suitable answer.

Reg. No.	
----------	--

	Marks
Part A	
Part B	
Total %	

G .	!
Correct	
Wrong	

ම් ලංකා වනක ආශ්රවදා ලේක් ক্রিক্ষানীত পাত স্থিতিয়া হিচাপে সক্ষাপ

JAME OMILIO CHOICEMENS. ON SUI TVAKE

KANDA BE COMME OF WHICH

1	a	b	с	d	e	2	a	b	с	d	е	3	а	b	с	d	е	4	а	b	с	d	e]
																								3636
5	a	b	с	d	е	6	a	b	С	d	е	7	a	ь	С	d	e	8	a	b	c	d	e	
											<u> </u>													
9	а	b	С	d	е	10	a	b	С	d	е	11	a	b	С	d	e	12	a	b	С	d	e	
									ļ	-	<u> </u>					ļ <u>.</u> .]	ļ	<u>.</u>			_
13	а	b	c	d	e	14	а	b	c	d	e	15	a	b	C	ď	e							

Part B (55 marks)

Answer all the questions in the space provided. Attached sheets will not be graded.

- 1. (a) (i) mer, cis-[lr]Me₂(CO)₃] (A) undergoes reductive elimination to give an organic molecule (B) and the 16e-complex (C). Identify (B) and (C).
 - (ii) Draw the structures of the other two isomers of (A).
 - (b) MeBr oxidatively adds to [RhBr₂(CO)₂] to give (P). (P) in the presence of CO gives the acetyl complex (Q). (Q) reductively climinates (R) to regenerate [RhBr₂(CO)₂]. Identify (P), (Q) and (R).

(P) (Q) (R)

- (c) Identify the products of the following reactions using the hint given in the brackets.
- (i) $[Fc(PMe_3)_4] \rightarrow 18e$ -complex (K) (cyclometallation)
- (ii) [MeMn(CO)₅] + 13 CO \rightarrow 18e-complex (L) (migratory insertion)
- (iii) $[(\eta^5-Cp)(OC)_2Fe=CMe_2]^+$ + LiPh \rightarrow 18e-complex (M) (nucleophilic addition)

(K)

(L)

 (\mathbf{M})

(d)	What is the active catalyst used in the
	(i) Monsanto Process
	(ii) Roelen Process
(e)	Write on the dotted line, the compound/reagent(s) which can be used to carry ou the following conversions.
	(i) $[(\eta^5 - Cp)(OC)_2 Ru(\eta^1 - C_3 H_5)] \rightarrow [(\eta^5 - Cp)(OC)_2 Ru(\eta^2 - CH_2 = CHMe)]^+$
	(ii) $[(\eta^5-Cp)_2ZrCl_2] \rightarrow [(\eta^5-Cp)_2Zr(C\equiv CPh)_2]$

Name:		• • •		٠.	 ٠.	٠.	٠.	٠.	٠.		 ٠.		•	 ٠.	٠.	٠.	٠.		 ٠.		 			
Registration N	ło:	٠.			 		٠.		٠.		 	٠.		 					 	. .	 ٠.	٠.		
Address:					 	٠.				٠.	 	٠.		 					 •		 ٠.			٠.
					 	٠.				٠.	 	٠.		 				- •	 	.,	 		••	
		•••	•		 						 	• • •		 	٠,				 				• • •	•

Answer Guide ORGANOMETALLIC CHEMISTRY CYU5300 CAT-2 - 2019/2020

Part A - MCQ Answers

1. e 2. d 3. c 4. b 5. c 6. c 7.b 8. a

9. e 10. d 11. a 12. a 13. a 14. a 15. e

Part B

1) a) i) (B) CH₃-CH₃ (C) [IrI(CO)₃] OR (B) Mel, (C) [IrMe(CO)₃] ii)

- b) $(P) = [RhBr_3(Me)(CO)_2]^T$
 - $(\mathbf{Q}) = [Rh(COMe)(CO)_2Br_3]^T$
 - $(\mathbf{R}) = \mathsf{MeCOBr}$

c)

- d) (i) $[Rh(CO)_2I_2]$
 - (ii) [HCo(CO)₃]
- e) (i) HX (X=Cl, BF₄) etc ii = Na(C≡CPh)

f)

