

THE OPEN UNIVERSITY OF SRI LANKA

B. Sc. DEGREE PROGRAMME 2019/2020

CYU5300/CMU3122 – ORGANOMETALLIC CHEMISTRY REGIONAL CENTRE

ASSIGNMENT TEST-II (NBT)

EX ABAIN A TION

S Com Born Delograge

On SEP

OG SEP

CHARGE UNIVERSITY OF THE

EXAMINATION

DATE: 06th September 2019

TIME: 4.15 p.m.- 5.15 p.m.

ANSWER ALL QUESTIONS

Mark a cross (X) over the ENGLISH LETTER that corresponds to most suitable answer on the given answer script. Any answer with more man one cross will not be counted.

PART A (45 marks)

- 1. Pick the correct statement regarding an oxidative addition reaction.
 - a) Oxidation number of the metal is always increased by 2 units.
 - b) Coordination number of the metal is always increased by 2 units.
 - c) Coordinatively saturated metal centres cannot undergo oxidative addition reaction.
 - d) Oxidative addition is facile if the metal centre is coordinatively saturated.
 - e) Oxidative addition of MeI to Vaska's complex is trans.
- 2. Which one is an example for 2e-oxidative-addition reaction?
 - a) $[Co_2(CO)_8] + H_2 \rightarrow 2 [HCo(CO)_4]$
 - b) $2 [Co(CN)_5]^{3-} + MeI \rightarrow [MeCo(CN)_5]^{3-} + [CoI(CN)_5]^{3-}$
 - c) $[Ni(CO)_4] + ICH=CH_2 \rightarrow [(OC)_3Ni(\eta^2-CH_2=CH_2)]I + CO$
 - d) $[Ni(PEt_3)_3] + PhI \rightarrow [Ni(Ph)(I)(PEt_3)_2] + PEt_3$
 - e) $[MeMn(CO)_5] + CF_2 = CF_2 \rightarrow [Mn(CF_2CF_2Me)(CO)_5]$
- 3. Catalyst used in Union Carbide process is
 - a) $[Co_2(CO)_8]$
- b) [RhCl(PPh₃)₃]
- c) [RhH(CO)(PPh₃)₂]

- d) [HCo(CO)₄]
- e) [RuHCl(PPh₃)₃]
- 4. Which one is an example of an insertion reaction?
 - a) $[Fe(CO)_5] + CF_2 = CF_2 \rightarrow [(OC)_4 Fe(CF_2 = CF_2)] + CO$
 - b) $[MeMn(CO)_5] + CF_2 = CF_2 \rightarrow [Mn(CF_2CF_2Me)(CO)_5]$
 - c) $[Fe(CO)_5] + 2 CF_2 = CF_2 \rightarrow [(OC)_4 Fe(C_4F_8)] + CO$
 - d) $[Pt(PPh_3)_4] + PhI \rightarrow [Pt(Ph)(I)(PPh_3)_2] + 2 PPh_3$
 - e) $[(\eta^1 C_3H_5)Mn(CO)_5] \rightarrow [(\eta^3 C_3H_5)Mn(CO)_3] + 2 CO$
- 5. Electrophilic attack of Br2 on a coordinated CH2=CH2 is facilitated if
 - a) the metal is coordinatively unsaturated.
 - b) the metal is in high oxidation state.
 - c) the metal coordinated to good σ -donor ligands.
 - d) electron withdrawing groups are on coordinated ligands.
 - e) none of the above statements is true.

6. [Fe(CO)s] can be conver a) HCl b) H			it with e) HOAc	
7. What is the major produce a) AlClMe ₂ (PPh ₃) ₃ c) Al[RhMe ₂ (PPh ₃) ₃ e) [AlCl(PPh ₃) ₃] +	b) [RhMe 2]	e(PPh3)3]	Cl(PPh3)3] and AlMe	3?
8. Which metal carbonyl ha a) [Fe ₃ (CO) ₁₂] d) [Re ₂ (CO) ₁₀]	s got bridging carbo b) [Ir4(CO) ₁₂] e) [Os ₃ (CO) ₁₂]	onyl ligands? c) [Ru	•	
9. α-Hydride abstraction co a) <i>trans</i> -[NiBr(OMe c) [EtOCo(CO) ₃] e) [(η ⁵ –C ₅ H ₅)Ta(CH	b)(PMe ₃) ₂] b) d)	[Ni(PMe3)4] [PhMn(CO)4]	
 10. What is the product form a) [MeMn(CO)₅] d) [Mn(η³-allyl)(CO)₄] 	b) [Mn(n²-allyl)($(0)_{c1}$	warmed in hexane? ε) [Mn(η ¹ –allyl)(CO) ₂	.]
11. How many IR bands doe a) 1 b) 2	es [V(CO) ₆] ⁻ show? c) 3	d) 4	e) 5	
12. Consider the following s (i) The carbonyl stre higher than those	statements about met etching frequencies of tof triply bridging of	of doubly brie	dging metal carbonyls	are
(ii) CO stabilizes the	metal centres in hig	her oxidation	n states.	
(iii) The back bondir	ig decreases the M-0	CO bond stre	ngth.	
The correct statement/s			-	
(i) only. d) (i) & (iii) only.		c) (ii) & (iven.	iii) only.	
cis-CH₃CH=CH∈ a) D < C < B < A	rogenation of the ole cyclohexene (B); CH ₃ (C) trans-CH b) C < D < e) D < B <	₃CH=CHCH B < A c	3 (D);	
14. Which one of the follows a) [Ni(P{OPh} ₃) ₄] d) [HCo(CO) ₄]	b) [RuCl ₂ (F e) [RhCl(Pl	PPh3)3] c Ph3)3])[Pd(CN) ₂ (NCPh) ₂]	
15. The component not used				

BOWN DEPART CL

THE OPEN UNIVERSITY OF SRI LANKA

B.Sc. Degree Programme - Level \$

Assignment Test II - 2019/2020

CYU5300/CMU3122 - Organometallic Chemistry

2020 KANDY REGIONNAL CHAPTE

MCQ Answer Sheet: Mark a cross (\times) over the ENGLISH LETTER that corresponds to the most suitable answer.

Reg. No.	
----------	--

-	Marks
Part A	
Part B	
Total %	

FOR EXAMINE	R'S US	E ONLY
Answers	No.	Marks
Correct		
Wrong '		
Total		

1	a	b	c	đ	e	2	a	b	С	d	e	3	я	b	С	d	е	4	a	b	c	d	e	-
					ļ																			
5	a	b	С	d	e	6	a	b	С	d	е	7	a	b	c	d	е	8	а	b	С	d	е	
9	а	b	c	d	e	10	а	b	С	d	e	11	а	b .	С	d	e	12	a	b	С	d	e	
																						L		
13	a	b	e	d	e	14	a	b	С	d	е	1.5	a	b	С	d	e							

Part B (55 marks)

Answer all the questions in the space provided. Attached sheets will not be graded.

- 1. (a) (i) mer,cis-[lrIMe2(CO)3] (A) undergoes reductive elimination to give an organic molecule (B) and the 16e-complex (C). Identify (B) and (C).
 - (ii) Draw the structures of the other two isomers of (A).

(b) MeBr oxidatively adds to [RhBr₂(CO)₂]⁻ to give (P). (P) in the presence of CO gives the acetyl complex (Q). (Q) reductively eliminates (R) to regenerate [RhBr₂(CO)₂]⁻. Identify (P), (Q) and (R).

(P)(Q)

(R)

- (c) Identify the products of the following reactions using the hint given in the brackets.
- (i) $[Fe(PMe_3)_4] \rightarrow 18e$ -complex (K) (cyclometallation)
- (ii) [MeMn(CO)₅] + 13 CO \rightarrow 18e-complex (L) (migratory insertion)
- (iii) $[(\eta^5-Cp)(OC)_2Fe=CMe_2]^+$ + LiPh \rightarrow 18e-complex (M) (nucleophilic addition)

 (\mathbf{K})

(L)

 (\mathbf{M})

(d)	What is the active catalyst used in the
	(i) Monsanto Process
	(ii) Roelen Process
(e)	Write on the dotted line, the compound/reagent(s) which can be used to carry ou the following conversions.
	(i) $[(\eta^5-Cp)(OC)_2Ru(\eta^1-C_3H_5)] \rightarrow [(\eta^5-Cp)(OC)_2Ru(\eta^2-CH_2=CHMe)]^+$
	(ii) $[(\eta^5-Cp)_2ZrCl_2] \rightarrow [(\eta^5-Cp)_2Zr(C\equiv CPh)_2]$

Name:		٠.	•	٠.	•	 •	•		•	٠.	•	٠.		 	٠.	٠	 •			•	٠.	•	٠.	•	٠.		٠.		٠.	٠.	•	
Registration No) :					•				٠.																٠.						
Address:	.,.																		. ,									. .	•	٠.		 •••
							. .		• •		٠.		٠.															•				
								•			٠.						 	٠.						٠.								

Answer Guide ORGANOMETALLIC CHEMISTRY CYU5300 CAT-2 - 2019/2020

Part A - MCQ Answers

Part B

1) a) i) (B) CH₃-CH₃ (C) [Irl(CO)₃] OR (B) Mel, (C) [IrMe(CO)₃] ii)

- b) $(P) = [RhBr_3(Me)(CO)_2]^T$
 - $(\mathbf{Q}) = [\mathsf{Rh}(\mathsf{COMe})(\mathsf{CO})_2\mathsf{Br}_3]^\mathsf{T}$
 - $(\mathbf{R}) = \text{MeCOBr}$

c)

- d) (i) $[Rh(CO)_2I_2]^-$
 - (ii) [HCo(CO)₃]
- e) (i) HX (X=Cl, BF₄) etc ii = Na(C≡CPh)

f)

