THE OPEN UNIVERSITY OF SRI LANKA B.Sc. DEGREE PROGRAMME - 2019/2020 LEVEL 4 - CYU4300 INORGANIC CHEMISTRY ASSIGNMENT TEST I (NBT) | DATE: 5 th August 2019 | | 4.15 p.m. – 5.15 p.m. | |---|--|---| | Answer all questions Mark a cross X over (Englithe given answer sheet. A | lish letter) that corresponds | bonds to the most suitable answer or than one X will not be counted. | | 1. Consider the following (i) glycinate The dianionic ligand/s | (ii) carbonate | (iii) sulphate | | a) (ii) only | b) (i) & (ii) only
e) (i), (ii) & (iii) | c) (i) & (iii) only. | | 2. What is the most likely (gly = glycinate, ox = c | | (gly)(ox)] ? | | a) Trigonal | b) Square pyramid
e) Answer is not g | | | b) Disodium to c) Disodium to d) Sodium did e) Sodium trick. 4. What is the coordination | chloronitrosylferrate(I
crichlorodicyanonitrosy
crichlorodicyanonitrosylf
cyanotrichloronitrosylf
chlorodicyanonitrosylf
on number of Fe in di
c) 5 d) 6 | ylferrate(II) yliron(II) ferrate(III) ferrate(III) carbonylglycinatooxalatoiron(III)? | | · · | ement from the following of Co is obalt ion is d^2sp^3 . al complex. complex. complex. | ing statements about [Co(NH ₃) ₆] ³⁺ | | 6. Consider the following (i) This shows trig (ii) Coordination (iii) The hybridize | gonal planar geometry.
number of Pt is 3. | | | | ⁷ alence Electron
ber of Co is 9) | 1 Count (VEC) | of Co in [CoC | ClBr ₂ (CO)(NH ₃)]? | ? | |--|---|---|--|---|------------------| | a) 16 | b) 17 | c) 18 | d) 09 | e) 10 | | | | oin only magnet
e ak ligand and µ
b) 1.73 | $u = [n(n+2)]^{1/2} (a$ | | nplex [Co(H ₂ O) ₆]
Co = 27)
e) 5.91 | Cl _{3.} | | a) [Cr(C
c) K₃[Cı | O)2(NH3)4]Cl·2] | H_2O b) | d give the high
[CrCl ₂ (NH ₃) ₄
[CrCl(NH ₃) ₅] | | tivity? | | L = neutral a) (A) sho b) (B) sho c) (A) and d) (B) sho | orrect statement ligand. (A) ows cis-trans ison two states of (B) are octahed ows ionization is olar conductivity |) [CoBr ₂ L ₄]
merism.
nerism.
dral complexes.
comerism. | (B) [Co(Ĥ ₂ O |)L₅]CÍ·H₂O` | | | 11. The number a) 6 | of possible georetic b) 5 c) 4 | | s of the comple
e) 2 | ex [MA ₃ B ₂ C] is | | | a) Oxida
b) Brom
c) Brom
d) Secon | of the following stion number of 6 ide ligand is not ide ligand is trandary valency of s not show optic | Cr is +2. trans to carbon as to oxygen ato Cr is five. | atom. | CrBr(SO₄)(CO)₃]. | | | (Atomic nur
a) It is a sq
b) Its IUPA
c) The hyb
d) Cobalt c | orrect statement on the property of Co is 27 uare planar comp. Con the property of Co entre obeys the Hordination number of the production of Co. |).
plex.
moniachloroocd
in this complex
EAN rule. | obalt(I).
is sp ³ . | | | | ligand. (i) It is a (ii) The c (iii) It is The correct a) (i), (ii) | diamagnetic corcrystal field stab
an octahedral constatement/s is/a
& (iii) b) | mplex with six a
ilization energy
implex where no
re
(i) & (ii) only | d-electron in the is $-0.4 \Delta_0$. The electrons lies $-0.4 \Delta_0$. | · · | k | | a) The v
b) [CoH
c) [CoH
d) [CoM | alence electron cou
(CO) ₃] is coordina
(CO) ₃] + H ₂ \rightarrow [C | tomic no. of $Co = 2$ ant of Co in $[CoH(0)]$ is an or $[Co(COMe)(CO)_3]$ is an or $[Co(COMe)(CO)_3]$ is are false. | CO)4] is 16.
nplex.
xidative additio | | |--|---|--|---|---| | (a) a regula
in the cr
(b) a regula
the crys
(c) same ar
(d) differer | r arrangement of corystal lattice arrangement of cotal lattice tangement of cons | stalline solids is du onstituent particles constituent particles tituent particles in constituent particles w temperature. | observed over
observed over
different directi | a long distance in | | (i) Lattice p
(ii) A given
points o
(iii) The unit
build.
The correct
(a) (i) or
(d) (ii) a | coints all have identification or crystal system will not the system. I cell is the smalles I statement is/are ally (b) (and (iii) only (e) (| | t cells depending om which the war (c) (i) and (in | ng on the lattice hole lattice can be ii)only | | the corners
The formul | Boccupies the ce a of the compound | | occupies the ce | entre of edges. | | (a) ABC | (b) ABC ₂ | (c) ABC ₃ | (d) ABC ₄ | (e) A_2BC | | (a) Num
(b) Num
(c) Num
(d) Num | ber of octahedral v
ber of tetrahedral v | the unit cell
hbours of a particle
roids in a unit cell | | | | 20. The number (a) 1 | of atoms per unit (b) 2 | cell in a bcc structu
(c) 4 | re is (d) 6 | (e) 8 | | structures. | Close packed struct acking efficiency | cubic closed packin
ures always have:
(ii) Highest void t | | | | (a) | (i) only
(i) and (ii) only | (b) (iii) only
(e) (i), (iii) and | • | c) (i) and (iii) only | | (i) Interstitial defect | (ii) Vacancy o | defect | |--|--------------------|---| | (iii) Frenkel defect | (iv) Schottky | defect | | The correct answer/s is/ar | e | | | (a) (i) only | (b) (ii) only | (c) (iv) only | | (d) (i) and (ii) only | | | | 23. Consider the following sta | atements regardi | ing Miller indices. | | (i) Numbers are always | s separated by co | ommas. | | (ii) They cannot have f | ractions. | | | (iii) Negative numbers | are indicated wi | ith a bar sign above the digit. | | The correct statement/s is/a | | 5 | | (a) (i) only | (b) (ii) only | (c) (i) and (ii) only | | (d) (ii) and (iii) only | | | | 24. Voids are empty spaces in | n a lattice. Whicl | h of the following lattices has the highest | | void fraction? | | | | (a) Face centered cubi | c (| (b) Body centered cubic | | (c) Hexagonal close p
(e) Cubic close packe | | (d) Primitive cubic | | 25. X-rays are used for study | no crystal struct | tures of solids because | 22. Which of the following defects decrease the density of a crystalline solid? - - (a) They have very high energy hence they can penetrate through solids. - (b) They are electromagnetic radiation comparable to interatomic distances. - (c) Their wavelengths are comparable to interatomic distances. - (d) Their high energy frequency enables rapid analysis. - (e) They can produce coloured pattern. ## THE OPEN UNIVERSITY OF SRI LANKA ### B. Sc. Degree Programme - Level 4 CAT-I - 2019/2020 ### CYU4300 - Inorganic Chemistry MCQ Answer Sheet: Mark a cross (\times) over the English Letter that corresponds to the most suitable answer. | FOR EXAMINER'S USE ONLY | | | | | | | | | | |-------------------------|-----|-------|--|--|--|--|--|--|--| | Answers | No. | Marks | | | | | | | | | Correct | | | | | | | | | | | Wrong | | | | | | | | | | | Total | | | | | | | | | | | 1 | a | b | c | d | e | 2 | a | b | c | d | e | 3 | a | b | С | d | e | 4 | a | b | С | d | e | |----|---|---|----------|---|---|----|---|---|----------|---|---------|----|---|---|---|---|---|----|---|---|---|---------|----------| 5 | а | b | С | ď | e | 6 | a | b | c | đ | e | 7 | a | b | c | d | е | 8 | а | b | с | d | e | 9 | a | b | c | d | e | 10 | a | b | c | d | e | 11 | а | b | С | d | e | 12 | а | b | С | d | e | | | | | <u> </u> | - | 13 | a | b | С | d | e | 14 | a | b | С | d | e | 15 | а | b | С | d | e | 16 | a | b | c | d | e | <u></u> | | | 17 | a | b | e | d | e | 18 | a | b | С | d | e | 19 | a | b | c | d | е | 20 | а | b | С | d | e | 21 | а | b | С | d | е | 22 | a | b | С | d | e | 23 | a | b | С | d | e | 24 | a | b | С | d | e | | | | | | | | | | | <u> </u> | | <u></u> | | | | | | | L | | | | L | <u> </u> | | 25 | a | b | c | d | e | | | | | | | | | | | | | | | | | | | #### Answer Guide for CAT-I-2019/2020 CYU4300 – Inorganic Chemistry held on 05-08-2019 ## MCQ ANSWERS 1. d 2. b 3. e 4. d 5. c 6. e 7. a 8. d 9. c 10. d 11. d 12. e 13. a 14. e 15. d 16. b 17. e 18. c 19. b 20. b 21. a 22. e 23. d 24. d 25. c 1 | Reg. No.: | •••••• | ••••••• | | ••••• | •••••• | |---|---|---|---|--------|--------| | Name: | ••••• | ••••• | ••••• | | | | Address: | *************************************** | | *************************************** | •••••• | | | • | ••••• | | | | ÷ | | | | • | ••••• | | | | | | | | | |