

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. DEGREE PROGRAMME - 2019/2020 LEVEL 4 - CYU4300 INORGANIC CHEMISTRY ASSIGNMENT TEST I (NBT)

DATE: 5" August 2019				4.13 p.m. – 3.13 p.m.
Answer all questions Mark a cross X over (Englis the given answer sheet. Any		-		
1. Consider the following lig (i) glycinate The dianionic ligand/s is	(ii) carb /are	onate	(iii) s	ulphate
a) (ii) only d) (ii) & (iii) only.	b) (1) & e) (i), (ii	(11) only i) & (iii)		c) (i) & (iii) only.
2. What is the most likely ge (gly = glycinate, ox = oxa		f [Co(CO)	(gly)(ox)]?
	b) Squar	re pyramid er is not g		c) Tetrahedral
 3. The IUPAC name of the c a) Dicyanotrichl b) Disodium tric c) Disodium tric d) Sodium dicya e) Sodium trichl 	oronitros hlorodicy hlorodicy notrichlo	ylferrate(ll vanonitrosy vanonitrosy ronitrosylf	I) ion dferrate(I diron(II) errate(III)	I))
4. What is the coordination a) +2 b) 4	number (of Fe in die d) 6	carbonylg e) +3	glycinatooxalatoiron(III)?
 5. Pick the incorrect statemed of which μ = 0 BM. (Gra) Hybridization of cobb) It is an inner-orbital cobb it is a high-spin compd) It is a diamagnetic cobb it is a diamagnetic cobb it is a diamagnetic cobb. 6. Here NH₃ acts as a statement of the statement	oup numbalt ion is a complex. olex. omplex.	per of Co is d^2sp^3 .		ents about [Co(NH ₃) ₆] ³⁺ .
6. Consider the following state (i) This shows trigon (ii) Coordination num (iii) The hybridizatio The correct statement/s a) (ii) only d) (i) & (ii) only	al planar g nber of Pt n of Pt in is/are, b) (i) &	geometry. is 3. this complete (iii) only	lex is sp ³ .	

(Group number	er of Co is 9)	count (vec)	or com teoe	1012(00)(11113)]:
a) 16	b) 17	c) 18	d) 09	e) 10
u) 10	0) 11	<i>-</i>)	4) 0)	-) 10
	n only magnetic i a k ligand and μ = b) 1.73			plex [Co(H ₂ O) ₆]Cl ₃ . Co = 27) e) 5.91
,	,	•	•	ŕ
))2(NH3)4]Cl·2H21 CN)6]	Ó b)	l give the high [CrCl ₂ (NH ₃) ₄ [CrCl(NH ₃) ₅]	
L = neutral li a) (A) show b) (B) show c) (A) and d) (B) show	rrect statement conigand. (A) [of the constraint of the constraint of the constraint of the conductivity o	CoBr ₂ L ₄] erism. rism. al complexes. nerism.	(B) [Co(H ₂ O))L ₅]Cl·H ₂ O
11. The number of a) 6	of possible geome b) 5 c) 4	etrical isomer d) 3	s of the comple e) 2	ex [MA ₃ B ₂ C] is
a) Oxidat b) Bromic c) Bromic d) Second	f the following state ion number of Crude ligand is not transtary valency of Crude show optical	is +2. ans to carbon to oxygen ato r is five.	atom.	CrBr(SO ₄)(CO) ₃].
(Atomic num a) It is a squ b) Its IUPA(c) The hybri d) Cobalt ce	rrect statement realer of Co is 27). Here planar complete name is triammedization of Co in the obeys the EAR dination number of the control of the control of the control of the EAR dination number of the EAR dination number of the EAR dination number of the control of the con	ex. oniachlorooco this complex AN rule.	obalt(I). is sp³.	
ligand. (i) It is a continuous (ii) The continuous (iii) It is a continuous (iii) It is a continuous (iii) (iii)	diamagnetic comp rystal field stabili: nn octahedral com statement/s is/are	plex with six of zation energy uplex where notes; (a) & (ii) only	d -electron in th is $-0.4 \Delta_0$. o electrons lie c	-

a) The v b) [CoH c) [CoH d) [CoM	alence electron $(CO)_3$] is coor $(CO)_3$] + H ₂ · $(CO)_3$] + Co	t. (Atomic no. of n count of Co in dinatively saturat \rightarrow [CoH ₂ (CO) ₃] i O \rightarrow [Co(COMe) nents are false.	[CoH(CO) ₄] is ted complex. s an oxidative	e addition rea	
(a) a regula in the cr (b) a regula the crys (c) same ar (d) differen	r arrangement rystal lattice ar arrangement tal lattice rangement of our	f crystalline solid of constituent partice constituent partice of constituent partice a low temperature.	rticles observ articles observ les in differen articles in diffe	ved over a lo	ng distance in
(i) Lattice p (ii) A given points of (iii)The unit build. The correct (a) (i) or	coints all have crystal system the system. cell is the small statement is/a		dings. ent unit cells cock from which (c) (lepending or	lattice can be
the corners. The formul	B occupies the of the compo		and C occupie	es the centre	of edges.
(a) Num (b) Num (c) Num (d) Num	ber of particles ber of nearest ber of octahed ber of tetrahed	(c) ABO crystalline solid in the unit cell neighbours of a p ral voids in a unit lral voids in a unit	is: particle t cell t cell	ABC4	(e) A ₂ BC
20. The number (a) 1	of atoms per u	unit cell in a bcc (c) 4	structure is (d)	6	(e) 8
structures. C	Close packed st acking efficier	and cubic closed paructures always lacy (ii) Highest	nave:		
(a)	(i) only (i) and (ii) only	(b) (iii) or y (e) (i), (iii	•	(c) (i)	and (iii) only

(i) Interstitial defect	(ii) Vacancy	defect	
(iii) Frenkel defect	(iv) Schottky	defect	
The correct answer/s is/a	re		
(a) (i) only	(b) (ii) only	(c) (iv) only	
(d) (i) and (ii) only			
The correct statement/s is/a (a) (i) only	s separated by c fractions. s are indicated w are (b) (ii) only	ommas. Pith a bar sign above the di (c) (i) and (ii) only	
(d) (ii) and (iii) only	(e) (1) and (111)	only	
24. Voids are empty spaces i void fraction?	n a lattice. Whic	sh of the following lattices	has the highest
(a) Face centered cub	ic	(b) Body centered cubic	
(c) Hexagonal close p (e) Cubic close packe		(d) Primitive cubic	

22. Which of the following defects decrease the density of a crystalline solid?

- 25. X-rays are used for studying crystal structures of solids because,
 - (a) They have very high energy hence they can penetrate through solids.
 - (b) They are electromagnetic radiation comparable to interatomic distances.
 - (c) Their wavelengths are comparable to interatomic distances.
 - (d) Their high energy frequency enables rapid analysis.
 - (e) They can produce coloured pattern.

THE OPEN UNIVERSITY OF SRI LANKA

B. Sc. Degree Programme - Level 4 CAT-I - 2019/2020

CYU4300 - Inorganic Chemistry

MCQ Answer Sheet: Mark a cross (\times) over the English Letter that corresponds to the most suitable answer.

Reg. No.	
0	***************************************

FOR EXAMINER'S USE ONLY								
Answers	No.	Marks						
Correct								
Wrong								
Total								

1	a	þ	С	d	e	2	а	b	С	đ	e	3	a	b	С	d	e	4	a	b	c	d	e	
		ļ .																						
5	a	b	c	d	e	6	а	b	С	d	e	7	а	b	С	d	e	8	a	b	С	d	e	
9	a	b	c	d	e	10	а	b	c	d	e	11	a	b	С	đ	e	12	a	b	e	d	е	
13	a	b	С	d	e	14	а	b	c	d	e	15	a	b	c	d	e	16	a	b	c	d	e	
17	а	b	С	d	e	18	a	b	С	d	e	19	a	b	c	d	e	20	a	b	e	d	e	
21	a	b	c	d	e	22	a	b	c	d	e	23	а	b	c	d	e	24	a	b	c	d	e	
25	a	b	c	d	e		-			-														

Answer Guide for CAT-I-2019/2020 CYU4300 – Inorganic Chemistry held on 05-08-2019

MCQ ANSWERS

1. d 2. b 3. e 4. d 5. c 6. e 7. a 8. d 9. c 10. d
11. d 12. e 13. a 14. e 15. d 16. b 17. e 18. c 19. b 20. b
21. a 22. e 23. d 24. d 25. c

leg. No.:	•••
fame:	
ddress:	
<u></u>	