

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. DEGREE PROGRAMME - 2019/2020 LEVEL 4 - CYU4300 INORGANIC CHEMISTRY ASSIGNMENT TEST I (NBT)

DATE: 5 th August 2019		4.15 p.m. – 5.15 p.m.
, -		nds to the most suitable answer on an one X will not be counted.
1. Consider the following lig (i) glycinate The dianionic ligand/s is	(ii) carbonate /are	(iii) sulphate
a) (ii) only d) (ii) & (iii) only.		c) (i) & (iii) only.
2. What is the most likely ge (gly = glycinate, ox = oxe	alate)	
	b) Square pyramidale) Answer is not give	c) Tetrahedral en
b) Disodium tricc) Disodium tricd) Sodium dicyae) Sodium trichl 4. What is the coordination	oronitrosylferrate(III) chlorodicyanonitrosylfe chlorodicyanonitrosylfen notrichloronitrosylfen orodicyanonitrosylfen number of Fe in dican	ion errate(II) con(II) rate(III)
a) +2 b) 4	c) 5 d) 6	e) +3
 5. Pick the incorrect statement of which μ = 0 BM. (Great a) Hybridization of cobabilities an inner-orbital color of the statement o	oup number of Co is 9 alt ion is d^2sp^3 . complex. plex. mplex.	statements about [Co(NH ₃) ₆] ³⁺
The correct statement/s	al planar geometry. aber of Pt is 3. n of Pt in this complex is/are, b) (i) & (iii) only	is sp^3 .

	alence Electron ber of Co is 9)	Count (VEC)	of Co in [CoC	$CIBr_2(CO)(NH_3)$]?
a) 16		c) 18	d) 09	e) 10
	ak ligand and μ		Atomic no. of	
9. Which one of a) [Cr(Coo) K ₃ [Croo) [CrCloon to the cool of the	O)2(NH3)4]Cl·2H (CN)6]	2O b)	I give the high [CrCl ₂ (NH ₃) ₄ [CrCl(NH ₃) ₅]	est molar conductivity? 4]Cl Cl ₂
L = neutral a) (A) sho b) (B) sho c) (A) and d) (B) sho	ligand. (A) oves cis-trans ison ows hydrate isom d (B) are octahed ows ionization iso olar conductivity	[CoBr ₂ L ₄] nerism. erism. ral complexes. omerism.	(B) [Co(H ₂ O)L₅]Cl·H₂O
11. The number a) 6	of possible geomb) 5 c) 4			ex [MA ₃ B ₂ C] is
a) Oxida b) Brom c) Brom d) Secor	of the following sation number of Coide ligand is not a lide ligand is transatery valency of Coides not show optical	Tr is +2. Trans to carbon To oxygen ato Cr is five.	atom.	CrBr(SO4)(CO)3].
(Atomic nur a) It is a sq b) Its IUPA c) The hyb d) Cobalt c	orrect statement in the property of Co is 27) uare planar compact name is triaming ridization of Co is entre obeys the Experiments of the predination numbers.	olex. noniachlorooco n this complex AN rule.	obalt(I). is sp³.	
ligand. (i) It is a (ii) The (iii) It is The correc a) (i), (ii	diamagnetic con crystal field stabi an octahedral co t statement/s is/ar	nplex with six a lization energy mplex where n re (i) & (ii) only	d -electron in the value of Δ_0 of electrons lies c	

a) The valence electron combined by [CoH(CO) ₃] is coordinal coordinal conditions and [CoH(CO) ₃] + H ₂ → [CoH(CO) ₃] + CO → e) All the above statements	unt of Co in [CoHo tively saturated co CoH2(CO)3] is an c [Co(COMe)(CO)	(CO)4] is 16. mplex. oxidative addition	n reaction. reaction.
 16. The sharp melting point of cry (a) a regular arrangement of cin the crystal lattice(b) a regular arrangement of cthe crystal lattice(c) same arrangement of cons(d) different arrangement of c(e) the substance melts at a lo 	onstituent particles constituent particles stituent particles in constituent particle	s observed over a s observed over different direction	a long distance in
17. Consider the following statem (i) Lattice points all have ider (ii) A given crystal system will points on the system. (iii) The unit cell is the smalles build. The correct statement is/are (a) (i) only (b) (c) (d) (ii) and (iii) only (e) (c)	ntical surroundings I have different un t building block fr (ii) only	it cells dependin	g on the lattice
18. Three elements A, B and C cry the corners, B occupies the ce The formula of the compound (a) ABC (b) ABC ₂	entre of cube and C		
19. Co-ordination number of a cry (a) Number of particles in (b) Number of nearest neig (c) Number of octahedral v (d) Number of tetrahedral v (e) Total number of octahedral	the unit cell ghbours of a partic voids in a unit cell voids in a unit cell		
20. The number of atoms per unit (a) 1 (b) 2	cell in a bcc struct (c) 4	cure is (d) 6	(e) 8
21. Hexagonal close packing and structures. Close packed struct (i) Highest packing efficiency The correct answer is (a) (i) only (d) (i) and (ii) only	tures always have: (ii) Highest void (b) (iii) only	fraction (iii) I-	

22. Which of the following c	iefects decrease	e the den	isity of a crystalline solid?	
(i) Interstitial defect	(ii) Vacancy	defect		
(iii) Frenkel defect				
The correct answer/s is/a				
(a) (i) only	(b) (ii) only		(c) (iv) only	
(d) (i) and (ii) only				
23. Consider the following st	tatements regard	ding Mil	ller indices.	
(i) Numbers are alway	s separated by o	commas	•	
(ii) They cannot have	fractions.			
(iii) Negative numbers		vith a ba	r sign above the digit.	
The correct statement/s is/a				
(a) (i) only			(c) (i) and (ii) only	
(d) (ii) and (iii) only				
	n a lattice. Whic	ch of the	e following lattices has the high	est
void fraction?				
(a) Face centered cub			ly centered cubic	
(c) Hexagonal close p (e) Cubic close packe		(d) Prin	nitive cubic	
25. X-rays are used for study	ing crystal struc	ctures of	solids because.	

- - (a) They have very high energy hence they can penetrate through solids.
 - (b) They are electromagnetic radiation comparable to interatomic distances.
 - (c) Their wavelengths are comparable to interatomic distances.
 - (d) Their high energy frequency enables rapid analysis.
 - (e) They can produce coloured pattern.

THE OPEN UNIVERSITY OF SRI LANKA

B. Sc. Degree Programme - Level 4 CAT-I - 2019/2020

CYU4300 - Inorganic Chemistry

MCQ Answer Sheet: Mark a cross (\times) over the English Letter that corresponds to the most suitable answer.

Reg. No.	
----------	--

FOR EXAMINER'S USE ONLY									
Answers	No.	Marks							
Correct									
Wrong									
Total									

1	a	b	c	d	e	2	a	b	c	d	e	3	а	b	c	d	e	4	21	b	c	d	e
5	а	b	С	d	e	6	а	b	c	d	e	7	a	b	С	d	e	8	а	b	с	d	е
																	Ì.			<u> </u>			
9	а	b	c	d	е	10	a	b	c	d	e	11	a	b	С	d	e	12	а	b	c	d	e
																							—
13	a	b	С	d	e	14	а	b	С	d	e	15	a	b	С	d	e	16	a	b	c	d	e
17	а	b	С	d	e	18	a	b	c	d	e	19	a	b	С	d	e	20	a	b	С	d	e
																					-		
21	a	b	c	d	e	22	a	b	c	d	e	23	а	b	С	d	e	24	a	b	С	d	e
	[
25	a	b	С	d	e																		1

Answer Guide for CAT-I-2019/2020 CYU4300 - Inorganic Chemistry held on 05-08-2019

MCQ ANSWERS

1. d 2. b 3. e 4. d 5. c 6. e 7. a 8. d 9. c 10. d

11. d 12. e 13. a 14. e 15. d 16. b 17. e 18. c 19. b 20. b

21. a 22. e 23. d 24. d 25. c

Reg. No.:		• • • • • • • • • • • • • • • • • • • •	************	***************************************	•••••
Name:			••••••	•••••	
Address: .		************	*****************	••••	
	••••••		.14.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
•••••	••••••				