00407

The Open University of Sri Lanka Faculty of Natural Sciences B.Sc/ B.Ed Degree Programme

Department

: Botany

Level

: Level 4

Name of the Examination

: Final Examination

Course Code and Title

: BOU2101/BOE4101/BYU4301/BYE4301

Genetics and Evolution

Academic Year

: 2019/2020

Date

: 30. 12. 2019

Time

: 9.30 to 11.30 am

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of six (06) questions in four (04) pages.
- 3. Answer any four (04) questions selecting at least one (01) from each part.

 All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Draw fully labelled diagrams where necessary.
- 5. Relevant log tables are provided where necessary.
- 6. Having any unauthorized documents/ mobile phones in your possession is a punishable offense.
- 7. Use blue or black ink to answer the questions.
- 8. Circle the number of the questions you answered in the front cover of your answer script.
- 9. Clearly state your index number in your answer script.

Answers to the questions in Part A and Part B should be written in separate answer books

PART A

1.

A)

- i) Distinguish between coupling phase and repulsion phase in gene linkage.
- ii) Explain why backcrosses involving parents, with genes linked in the coupling and repulsion phases, do not yield the same proportions of progeny phenotypes.
- B) In an experiment with *Drosophila melanogaster*, females with cut wings (ct), vermilion eyes (v) and forked bristles (f) were mated to wild type males. The F_1 females were then backcrossed to ct v f males and 1000 progeny were scored:

Phenotype	No. of Progeny	Phenotype	No. of Progeny
+++	341	ct v +	96
ct v f	329	+ + <i>f</i>	104
ct + +	47	ct + f	16
+ v f	53	+ v +	14

- i) Determine whether the loci are linked.
- ii) If the genes are linked, determine the gene order.
- i) Diagram the cross and determine the distances between the genes.

2.

- A) What is Epistasis?
- B) Plants from a strain breeding true for white flowers was crossed to plants from a strain breeding true for red flowers. The F₁ progeny consisted of plants with red flowers only. The F₁ progeny were crossed to produce an F₂ generation that consisted of 175 red flowered, 62 cream flowered and 81 white flowered plants.

- (i) Using genetic symbols, suggest the genetic basis of the inheritance of flower colour.
- (ii) Provide genotypes for the parents, F_1 s and F_2 s of this cross.
- (iii) Illustrate a biochemical pathway that best explains the steps in pigment production, and indicate the steps affected by each gene.

3.

A)

- i) What are sex-linked genes?
- ii) Male house cats may be black or yellow. Females may be black, Tortoise-shell pattern, or yellow.
 - a) If these colours are governed by a sex-linked locus, how can these results be explained?
 - b) Using appropriate symbols, determine the phenotypes expected in the offspring from the cross, yellow female X black male.
 - c) A certain kind of mating produces females, half of which are tortoise-shell and half are black; half the males are yellow and half are black. What colours are the parental males and females in such a cross?

B)

- i) What is Co-dominance?
- ii) A pair of co-dominant alleles is known to govern cotyledon leaf colour in beans. The homozygous genotype $L^G L^G$ produces dark green, the heterozygous genotype $L^G L^Y$ produces light green, and the other homozygous genotype produces yellow leaves so deficient in chloroplasts that seedlings do not grow to maturity.
 - i) If light green plants are self-pollinated, determine the phenotypic and genotypic ratios in the seedling progenies.
 - ii) Will any kind of mating produce only light green plants in the progeny? (Interpret the genetics of the dark green, light green and yellow phenotypes in explaining your answer).

PART B

- 4. (a) Briefly describe the difference between the microevolution and the macroevolution.
 - (b) Give scientific evidence for macroevolution.
- 5. With reference to suitable examples, explain how reproductive isolating mechanisms restrict gene flow among closely related species.
- 6. Write short notes on any three of the followings
 - a. Evolutionary links
 - b. Directional selection
 - c. Agents that change the allele frequencies of a population.
 - d. Cro Magnon man
 - e. Origin of early earth
 - Copyrights Reserved-