The Open University of Sri Lanka

B.Sc./B.Ed. Degree Programme

Final Examination - 2019/2020

Pure Mathematics- Level 05

PEU5304 - Introduction to Complex Analysis

Duration: Two hours.

Time: 09.30a.m- 11.30a.m

Answer 04 Questions only.

- 1. (a) Let z be a complex number. Prove each of the following:
 - (i) $z\overline{z} = |z|^2$.
 - (ii) $z = -\overline{z}$ if and only if z = ri for some $r \in \mathbb{R}$.
 - (b) Let z_1 and z_2 be two complex numbers.
 - (i) Prove that $|z_1 + z_2| \le |z_1| + |z_2|$.

Deduce that $||z_1| - |z_2|| \le |z_1 - z_2|$.

(ii) Show that
$$\left| \frac{z^4 + iz}{z^2 + z + 1} \right| \ge \frac{|z|^4 - |z|}{|z|^2 + |z| + 1}$$
 when $|z| > 1$.

- 2. (a) Let z_1 and z_2 be two non-zero complex numbers. Prove each of the following:
 - (i) $\frac{z_1}{z_2}$ is a non-zero complex number.

(ii)
$$\arg\left(\frac{z_1}{z_2}\right) = \arg\left(z_1\right) - \arg\left(z_2\right)$$
.

- (b) Express $\frac{1+i}{\sqrt{3}-i}$ in polar form.
- (c) (i) Let $z_1 = z_2 = 2i$. Verify that $A \operatorname{rg} \left(\frac{z_1}{z_2} \right) = A \operatorname{rg} \left(z_1 \right) A \operatorname{rg} \left(z_2 \right)$.
 - (ii) Is it true that $A \operatorname{rg}\left(\frac{z_1}{z_2}\right) = A \operatorname{rg}\left(z_1\right) A \operatorname{rg}\left(z_2\right)$ for all $z_1, z_2 \in \mathbb{C} \setminus \{0\}$? Justify your answer.

3. (a) State De Moivre's Theorem for a positive integral index. Let r > 0 and $\theta \in \mathbb{R}$.

Given that
$$z = r(\cos\theta + i\sin\theta)$$
 and $w_k = \sqrt[4]{r} \left\{ \cos\left(\frac{\theta + 2k\pi}{4}\right) + i\sin\left(\frac{\theta + 2k\pi}{4}\right) \right\}$ for

$$k = 0,1,2,3$$
, show that $w_k^4 = z$ for $k = 0,1,2,3$.

Hence, find the four solutions z_1, z_2, z_3, z_4 of the equation $z^4 = -8 + 8\sqrt{3}i$ in the Cartesian form.

(b) Let $\omega = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$.

Write down the value of ω^5 and prove that $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$.

Simplify
$$(\omega + \omega^4)(\omega^2 + \omega^3)$$

Obtain a quadratic equation with integer coefficients having roots $\omega + \omega^4$ and $\omega^2 + \omega^3$.

Hence, show that
$$\cos \frac{2\pi}{5} = \frac{-1 + \sqrt{5}}{4}$$
.

- 4. (a) (i) Find all the complex roots of the equation $\overline{z} = \frac{9}{z}$.
 - (ii) Suppose that z_1 and z_2 are two complex numbers with z_1z_2 real and non-zero. Show that there exists a real number r such that $z_1 = r\overline{z_2}$.
 - (b) (i) Let p(z) = 0 be a non-constant complex polynomial with real coefficients. Prove that if α is a root of p(z) = 0, then α is also a root of p(z) = 0.
 - (ii) Consider the complex quartic equation $p(z) = z^4 + 3z^2 + 6z + 10 = 0$.

Show that
$$(1-2i)$$
 is a root of $p(z) = 0$.

Hence, find all the roots of
$$p(z) = 0$$
.

- 5. (a) Find all the complex numbers z, such that $e^{iz} = 3$.
 - (b) Prove that $|e^z|=1$ if and only if z is pure imaginary.
 - (c) (i) Solve the equation $\cos z = 2$.
 - (ii) Let z_1 and z_2 be two complex numbers such that $\cos z_1 = \cos z_2$.

Prove that there exists
$$n \in \mathbb{Z}$$
 such that $z_1 + z_2 = 2n\pi$ or $z_1 - z_2 = 2n\pi$.

- 6. (a) Let z_1 and z_2 be two non-zero complex numbers. Prove that $\log(z_1 z_2) = \log(z_1) + \log(z_2)$.
 - (b) Show that $\log \left[\left(1 + \sqrt{3}i \right) \left(1 i \right) \right] = \log \left(1 + \sqrt{3}i \right) + \log \left(1 i \right)$.
 - (c) Is it true $\text{Log}(z_1z_2) = \text{Log}(z_1) + \text{Log}(z_2)$ for all $z_1, z_2 \in \mathbb{C}$? Justify your answer.

