The Open University of Sri Lanka Faculty of Engineering Technology Department of Mechanical Engineering

Study Programme : Bachelor of Technology Honours in Engineering

Name of the Examination: Final Examination

Course Code and Title : DMX3304/ DMX3572/ MEX3272

Applied Electronics

Academic Year

: 2019/20

Date

: 11th October 2020

Time

: 1330hrs - 1630hrs

Duration

: 3 hours

WRITE YOUR REGISTRATION NUMBER CLEARLY WITHIN THE SPACE PROVIDED

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Eight (8) questions in Eight (8) pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. This is a Closed Book Test (CBT).
- 6. Answers should be in clear hand writing.
- 7. Do not use Red color pen.

a) Briefly explain the Kirchhoff's Current Law (KCL) and Kirchhoff's Voltage Law (KVL).

[8 Marks]

b) Consider the Circuit diagram given below in Figure Q01.

Figure Q01

- i. Find the equations for the voltage V_2 and current i_1 in the circuit given in the Figure Q01, using nodal analysis.
- ii. Solve the equations and find the values of V2 and i1.

[8 Marks]

[4 Marks]

Question 02

a) The circuit shown in Figure Q02(i), consists of two resistors R_1 and R_2 with resistances $R_1 = 6 \Omega$ and $R_2 = 1.5\Omega$, one variable resistor R_{var} , one unknown resistor with value R_u , and a 9V battery connected.

When R_{var} is adjusted to 12Ω , there is zero current through the Ammeter. Find the unknown resistance R_{u} .

[10 Marks]

Figure Q02(i)

b) Determine I_D and V_{GS} for the JFET with voltage-divider bias shown in Figure Q02(ii). For this particular JFET, the internal parameters are such that $V_D = 7V$. (where, G-Gate, D-Drain, S-Source)

[10 Marks]

Figure Q02(ii)

a) Draw the output characteristics for a BJT (Bipolar Junction Transistor) in CE (Common Emitter) Configuration. Label each region clearly.

[5 Marks]

b) In the circuit shown in the Figure Q03(i), the BJT has a current gain (β) of 50. If V_{EB} (Emitter – Base Voltage) is 600 mV, Find the V_{EC} (Emitter - Collector Voltage).

[7 Marks]

Figure Q03(i)

c) For a BJT circuit shown in Figure Q03(ii), assume that the 'β' of the transistor is very large and the V_{BE} (Base – Emitter Voltage) is 0.7 V. Determine the mode of operation of the BJT.

[8 Marks]

Figure Q03(ii)

a) Briefly explain 4 characteristics of an ideal Op-amp.

[4 Marks]

b) For the ideal Op-amp shown in Figure Q04(i), Find the value of resistor R_f to obtain a gain of 5.

[6 Marks]

Figure Q04(i)

c) Evaluate the following amplifier circuit given in Figure Q04(ii), and Determine the value of resistor R₄ in order to obtain a voltage gain (V₀/V_i) of (-120).

[10 Marks]

Figure Q04(ii)

a) Draw circuit symbols of a diode and a Zener diode. Sketch the V/I characteristics of diode and Zener diode.

[4 Marks]

b) For the Zener diode regulator shown in Figure Q05(i), determine V_L, V_R and I_Z. [5 Marks]

Figure Q05(i)

c) In the circuit shown in Figure Q05(ii), assume that the diodes D_1 and D_2 are Ideal. Find the average value of voltage V_{ab} (in volts) across terminals 'a' and 'b'.

[11 Marks] -

Figure Q05(ii)

a) What are the main advantages of Hexadecimal numbering system?

[3 Marks]

b) Convert the number 3543216 (Hexadecimal) to Decimal number.

[4 Marks]

c) Determine the addition of the following numbers.

[4 Marks]

- i. 00111001₂ to 00101001₂
- ii. 10101.101₂ to 1101.011₂
- d) Determine the multiplication of 1010₂ by 1011₂.

[4 Marks]

e) Determine the division of 11100110₂ by 110₂. State the quotient and remainder clearly. [5 Marks]

Question 07

a) State the De' Morgan's theorem.

[4 Marks]

b) Prove the following Boolean Identities.

i.
$$A \overline{B} C + A B C + A B \overline{C} = A (B + C)$$
 [4 Marks]
ii. $A C + B \overline{C} = A B C + \overline{A} B \overline{C} + A B \overline{C} + A \overline{B} C$ [4 Marks]

c) The K-map for a Boolean function is shown in Figure Q07(i), Find number of essential prime implicants for this function.

[4 Marks]

CD AB	00	01	11	10
00	1	1	0	1
01	0	0	0	1
11	1	0	0	0
10	1	0	0	1

Figure Q07(i)

d) Use the K-Map technique and minimize the Boolean expression,

$$Y = \overline{A} \, \overline{B} \, \overline{C} \, D + \overline{A} \, B \, C \, \overline{D} + A \, \overline{B} \, \overline{C} \, D + A \, B \, \overline{C} \, \overline{D}$$

[4 Marks]

Question 08

a) Draw the symbols of the four Logic gates AND, OR, NAND and NOR for two inputs A and B.

[3 Marks]

b) Consider the Boolean function,

$$Z = A \overline{B} C$$

Find the minimum number of 2 input NAND gates required to implement the function above, assuming the inputs A, B, and C are available. (Hint: Draw the Logic gate diagram).

[4 Marks]

c) Consider the Boolean Expression,

$$X = AB + ABC + A\overline{B}\overline{C} + A\overline{C}$$

i. Draw the logic diagram for the expression.

[2 Marks]

ii. Minimize the expression.

[2 Marks]

iii. Draw the logic diagram for the reduced expression.

[2 Marks]

d) Prove the following expression by use of a truth table.

$$\overline{A} B \overline{C} + \overline{A} B C + \overline{A} \overline{B} C = \overline{A} B + \overline{A} C$$

[7 Marks]

END