

The Open University of Sri Lanka Faculty of Engineering Technology Department of Electrical & Computer Engineering

Study Programme

: Bachelor of Software Engineering Honors

Name of the Examination

: Final Examination

Course Code and Title

: EEZ3562/ECZ3262 - Mathematics

Academic Year

: 2019/2020

Date

: 26th July 2020

Time

: 1330-1630hrs

Duration

: 3 hours

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Eight (8) questions in Six (6) pages.
- 3. Answer any Five out of eight questions. All question carry equal marks.
- 4. Show all steps clearly.
- 5. Answer for each question should commence from a new page.
- 6. This is a Closed Book Test (CBT).
- 7. Programmable calculators are not allowed.
- 8. Do not use red color pen.

[6]

i.
$$\overline{(\bar{a}+b)(a+\bar{b})}$$

ii.
$$\overline{(a+b+c)abc}$$

b) Let p, q and r be propositions. By constructing the truth tables, show the following propositional equivalencies. [4]

i.
$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

ii.
$$(p \lor q) \to r \equiv (p \to r) \land (q \to r)$$

c) Consider the following truth table.

[10]

A	В	С	D	Result
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

- i. Setup the Karnaugh map for the above truth table.
- ii. Then find the solution and simplify using the K map.

 $\mathbf{Q2}$

a) If
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$
, then show that [6] $A^2 = 3A - 2I$; where I is the identity matrix of order 2.

b)

i. Let
$$A = \begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix}$$
. Is the matrix A nilpotent? Justify your answer. [3]

ii. If
$$A = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 7 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 6 \\ 1 & 4 \\ 5 & 2 \end{bmatrix}$ then find AB .

c) Using the method of Gaussian elimination, solve the following system of linear equations.

$$4x + 8y - 4z = 4$$
$$3x + 8y + 5z = -11$$
$$-2x + y + 12z = -17$$

Q3

i.
$$y = x^2 + 2$$

ii.
$$y = Sinx + 1$$

b) Find
$$\frac{dy}{dx}$$
 of the following functions. [8]

i.
$$y = \frac{1}{3}(\sqrt{1+x^4}-x^2)^3$$

ii.
$$y = x^2 sin x$$

c) If
$$y = -3x - \frac{1}{2}sin2x + 4cosx$$
, then show that [6]
$$\frac{dy}{dx} = -6 + 2(sinx - 1)^2$$

Q4

$$\int \frac{1}{x^3 - 1} dx$$

$$\int sinxln(cosx)dx$$

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \sin^3 x \cos x dx$$

Q5

a) For the statistical distribution of given below, calculate the Mode, Median, Mean,

Range, Variance and Standard Deviation.

[6]

xi	61	64	67	70	73
f_{i}	5	18	42	27	8

b) The following table shows the recorded high temperatures for each of the 50 engines.

Construct a histogram and a frequency polygon to represent the data.

[8]

Class Boundaries	Frequency
99.5 – 104.5	2
104.5 – 109.5	8
109.5 – 114.5	18
114.5 – 119.5	13
119.5 – 124.5	7 ·
124.5 - 129.5	1
129.5 – 134.5	1

c) XYZ (Pvt) Ltd has a contract to assemble components for a waste water management system to be used by the government. The time required to complete one part of the assembly is thought to be normally distributed, with a mean of 30 hours and a standard deviation of 4.7 hours. Find the probability that the assembly steps completed between 26 and 35 hours.

[6]

Q6 ·

a) Evaluate the following limits.

(i)
$$\lim_{x \to 0} \frac{\sin 5x}{-3x}.$$
 (ii)
$$\lim_{x \to 9} \frac{2x^2 - 162}{\sqrt{x} - 3}.$$
 (iii)
$$\lim_{x \to -2} \frac{x^3 + 8}{\frac{1}{2} + \frac{1}{x}}.$$
 [6]

- b) Let X and X are the exact value and the computed value of an answer, respectively. Find the **absolute error** and the **relative error** when: [4]
 - (i) $X = -0.0047, \overline{X} = -0.0045$ (ii) $X = -0.671 \times 10^{12}, X = -0.0669 \times 10^{13}$
- c) The difference table for $f(x) = e^x$ with h = 0.2 is shown below. [10]

x_i	f_i	Δf_i	$\Delta^2 f_i$	$\Delta^3 f_i$	$\Delta^4 f_i$
0.0	1.0000				
0.2	1.2214	0.2214	0.0490		•
0.4	1.4918	0.2704	0.0599	0.0109	0.0023
0.6	1.8221	0.3303	0.0731	0.0132	0.0023
0.8	2.2255	0.4034	0.0894	0.0163	0.0031
1.0	2.7183	0.4928	0.1090	0.0196	0.0033
1.2	3.3201	0 6018		0 0243	0.0047
1.4	1.0552	ก 7351	0.1333		

Selecting $x_0 = 0.4$ and using **Newton's forward** formula, find the value of f(0.43).

Q7

a) Given that
$$\tan \alpha = \frac{1}{2}$$
 and $\pi < \alpha < \frac{3\pi}{2}$, and $\sin \beta = \frac{3}{4}$ and $\frac{\pi}{2} < \beta < \pi$. Find, Sin 2α ii) $\cos(\alpha + \beta)$ iii) $\tan(\alpha - \beta)$ [6]

b) Sketch the graph of
$$y = \sin^2 x$$
, where $-2\pi \le x \le 2\pi$. [6]

c) Find the height of a chimney when it is found that, on walking towards it 50m on a horizontal line through its base, the angular elevation of its top changes from 30° to 45°.

[8]

Q8

a) A pyramid has a square base with side length of 8 m. The four lateral faces are congruent isosceles triangles with lateral edges of length 10 m. Find the surface area of this pyramid.

[10]

b) A trapezoid ABCD with AD parallel to BC has angle D equal to 40° , the length of DC is equal to 2m, the length of BC is equal to 5m and the area of the trapezoid is equal to $20m^2$. Calculate the length of AD.

[10]