

The Open University of Sri Lanka **Department of Physics** BSc Degree Programme – Level 5 Final Examination - 2019/2020

Course Code: PHU5300 / PYU3160 / PYE5160

Course Title: **Nuclear and Particle Physics**

Date: 1st February 2021

Time: 01:30 pm to 03:30 pm

Duration: 2 Hours

GENERAL INSTRUCTIONS TO CANDIDATES

- Read all instructions carefully before answering the questions.
- Unless specified, standard symbols have their usual meanings.
- This question paper consists of **06** Essay type questions in 03 pages.
- Answer only ANY FOUR (04) questions.
- Non-programmable calculators are allowed.
- Write your answers in the answer book / single sheets provided at the examination hall. Question / section numbers should be written against relevant answers.
- Write your Index Number in the spaces provided in the answer book / single sheets. Also write all other details requested in the answer book.
- Having any form of unauthorized documents / mobile phones in your possession is a punishable offense.
- (01) (a) Explain the similarities between a 'liquid drop' and an 'atomic nucleus'.
 - (b) Based on semi-empirical mass formula, binding energy of a nucleus can be expressed as:

$$E_B(A,Z) = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_{asy} \frac{(A-2Z)^2}{A} \pm \delta(A,Z)$$

Identify each and every term in the above formula.

- (c) Describe the contribution of the following terms in the above formula,
 - i. Surface energy term
 - ii. Volume energy term
 - iii. Asymmetric energy term
- (02) (a) Using Heisenberg's uncertainty principle, justify that existence of electrons inside a nucleus is impossible?
 - (b) Calculate the minimum kinetic energy required for an electron to stay inside the nucleus of an atom with mass number A = 112. (The radius, r, of the nucleus is given by the empirical radius formula, $r = r_0 A^{1/3}$ and $r_0 \approx 1.25$ fm.)
 - (c) What are (i) mirror nuclei and (ii) isotopes? Briefly describe their properties.
- (03) (a) State the conservation laws applicable to nuclear reaction and briefly describe them.
 - (b) When a nucleus of mass M_x is bombarded with a particle of mass m_x , the product particle of mass m_y is ejected at an angle of 90° with the direction of bombarding particle.

Show that the Q-value can be expressed as,

$$Q = K_y \left(1 + \frac{m_y}{M_y} \right) - K_x \left(1 - \frac{m_x}{M_x} \right)$$

where, M_y is mass of the product nucleus, K_x is kinetic energy of the nucleus and K_y is kinetic energy of the product nucleus.

- (04) (a) Briefly discuss the following processes with suitable examples.
 - (i) nuclear fission, and
 - (ii) nuclear fusion
 - (b) A nuclear power plant is generating power at the rate of 2 GW.
 - (i) How many U²³⁵ atoms undergo fission per second?
 - (ii) How many kilograms of U²³⁵ would be required to operate the power plant for one year?

(Consider: 1 MeV = $1.602 \times 10^{-13} \text{ J}$ and on an average 200 MeV energy is released per fission. Avogadro's number is $6.022 \times 10^{23} \text{ mol}^{-1}$).

- (05) (a) What are the three generations of leptons in standard model? Briefly describe each of them.
 - (b) What are the three generations of quarks in standard model? Briefly describe each of them.
 - (c) Compare and contrast weak interactions and strong interactions of quarks.
- (06) (a) Explain the principle and working of a Betatron, with the help of suitable sketches.
 - (b) Derive the following *Betatron condition* for a stable orbit of constant radius r in a magnetic induction B caused by the magnetic flux ϕ .

$$\emptyset = 2\pi r^2 B$$

(c) Discuss the different functions of the time varying magnetic field in the Betatron.
