THE OPEN UNIVERSITY OF SRI LANKA BSc DEGREE PROGRAMME: LEVEL 05

FINAL EXAMINATION: SEMESTER 2 - 2019/2020

DURATION: TWO HOURS (2 HOURS)		<u> </u>
DATE: 11.02.2021	-	TIME: 1.30 p.m. to 3.30 p.m
	C	
Answer FOUR Questions ONLY.		

Q1.

- "In 1950, Alan Turing proposed the Turing test, which was designed to provide a (a) satisfactory operational definition of intelligence."
 - Briefly explain the Turing test. (i)
 - The computer would have some capabilities in order to pass the Turing Test. (ii) Name three (03) of them.
- Artificial Intelligence has inherited many ideas, viewpoints, and techniques from other disciplines.

Give one inherited viewpoint/technique for each of the following disciplines:

- Mathematics
- Neuroscience
- Psychology
- Fill in the blanks with suitable answers. (c)

The propositional logic and predicate logic are considered under (i)			
mechanisms. In this reasoning the decisions are made in terms of two-f	old logic		
which evaluates to be true or false.	÷		
Propositional logic and predicate logic do not capture all the technique	s of		
reasoning which seem to be so effective in humans. (ii)	, such as		
multi valued logic, allows us to use predicate logic but with truth values such as			
'unknown.'			
(iii) process allows us to draw conclusions based of	n incomplete		
and inconsistent information about our rapidly changing environment a	nd goals.		

Write three (03) differences between Inductive reasoning and Deductive reasoning. (d)

Q2.

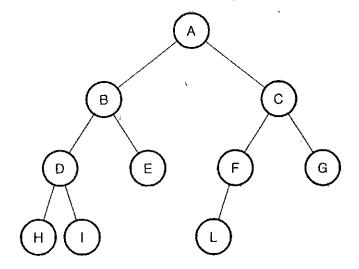
(a) Is the following well formed formula (WFF) valid? Justify your answer using a truth table.

$$[(P \lor Q) \land (Q \lor R)] \rightarrow (P \lor R)$$

- (b) Which of the following formulas are equvalent?
 - (i) $P \vee \neg Q$
 - (ii) $\neg (\neg P \land Q)$
 - (iii) $(P \land Q) \lor (P \land \neg Q) \lor (\neg P \land Q)$
 - (iv) $(P \land Q) \lor (P \land \neg Q) \lor (\neg P \land \neg Q)$
- (c) Transform the following formula into conjunctive normal form.

$$(A \lor B) \to (C \land D)$$

Q3.


- (a) Explain, using an example, how predicate logic addresses the limitations of propositional logic.
- (b) Translate the following statements into predicate logic.
 - (i) Brothers are siblings
 - (ii) Every student loves music
 - (iii) Some CSU5300 students love music
- (c) Transform the following formula into prenex normal form.

$$(\forall x) P(x) \rightarrow (\exists x) Q(x)$$

- (d) State whether the following formulas are true or false.
 - (i) $\forall x P(x) \equiv \neg \exists x \neg P(x)$
 - (ii) $\exists x P(x) \equiv \neg \forall x P(x)$
 - (iii) $\forall x \exists y P(x, y) \equiv \exists x \forall x P(x, y)$

Q4.

Consider the following binary tree. Answer the questions from (a) to (d).

- (a) In which order the nodes would be visited when the depth first search is used?
- (b) Which data structure is used to implement the depth first search?
- (c) Which of the following search strategies needs a very large memory space to store the search tree?
 - Breadth-first search
 - Depth first search
- (d) Which of the following search algorithms are optimal? Justify your answer.
 - Breadth-first search
 - Depth first search
 - Bi-directional search

Q5.

- (a) What is the difference between the table-driven agent program and simple reflex agent?
- (b) Briefly explain what a problem-solving agent does.
- (c) Define the following components of a problem.
 - (i) Initial State
 - (ii) State Space
 - (iii) Successor Function
 - (iv) Optimal Solution

- (d) Define the following components for a vacuum cleaner world.
 - Initial state
 - Successor function
 - Goal test
 - Path cost

O6.

- (a) Explain the meaning of the following built-in predicates of Prolog.
 - (i) assert
 - (ii) retract
 - (iii) setof-
- (b) Consider the following database written in Prolog. How does Prolog answer the queries given in the questions (i) and (ii)?

(Note: Each time that Prolog returns an answer, the user inputs ';' to ask for another answer.)

```
:-dynamic product/4.
```

- (i) ?- product (A, B, C, D).
- (ii) ?- printProList.
- (c) Create the following Prolog rules.

```
son/2, daughter/2, mother/2, father/2
```

(Assume that, all these rules have the standard meanings as their names imply.)