The Open University of Sri Lanka Department of Mathematics B. Sc/ B. Ed Degree Programme Final Examination - 2019/2020 Pure Mathematics – Level 03

 $PEU3301/PUU1141/PUE3141-Foundations\ of\ Mathematics$

Duration: Two Hours

Date: 24 - 10 - 2020

Time: 09.30 a.m.-11.30 a.m.

ANSWER FOUR (04) QUESTIONS ONLY

Q1

- (a) Solve the inequality |x+2|+|x-3|>5 where $x\in\mathbb{R}$.
- (b) Let R be the relation defined on \mathbb{Z} by xRy if 3 divides x + 2y.
 - (i) Show that R is an equivalence relation on \mathbb{Z} .
 - (ii) Find the equivalence class of 1.

Q2

- (a) Let $m, n \in \mathbb{Z} \setminus \{0\}$. Prove that if there exist $x, y \in \mathbb{Z}$ such that mx + ny = 1 then m and n are relatively prime.
- (b) Let $m, n \in \mathbb{N}$. Prove that gcd(m, n)lcm(m, n) = mn. Find gcd(546, 422) and lcm(546, 422).
- (c) Let f(x) = 2x + 3, $x \in [2, 3]$. Show that f is a bijection from [2, 3] to [7, 9]

Q3

- (a) Show that $\sqrt{1 + \sqrt{2 + \sqrt{3}}}$ is an algebraic number.
- (b) Let f and g be the functions given by

$$f(x) = \frac{x-4}{x+2}, x \in \mathbb{R} \setminus \{-2\}, \text{ and } g(x) = \frac{x+3}{x-2}, x \in \mathbb{R} \setminus \{2\}.$$

Find $f \circ g$ and $g \circ f$ with their respective domains.

Q4

(a) Let
$$A = \left\{1 - \frac{(-1)^n}{n} : n \in \mathbb{N}\right\}$$
.

- (i) Prove that both $\sup A$ and $\inf A$ exist.
- (ii) Find sup A and inf A. Justify your answers.
- (b) Solve the inequality $\frac{x-8}{x} \le 3 x$ and sketch the solution on the number line.

Q5

- (a) Let $< x_n >$ be the sequence of real numbers defined by $x_n = \frac{6}{(2n-1)(2n+1)}$ for $n \in \mathbb{N}$.
 - (i) Find A and B such that $\frac{6}{(2n-1)(2n+1)} = \frac{A}{(2n-1)} + \frac{B}{(2n+1)}$
 - (ii) Using the above result, show that the nth partial sum $s_n = \sum_{k=1}^n \frac{6}{(2k-1)(2k+1)} = 3 \frac{3}{2n+1}$, for each $n \in \mathbb{N}$.
 - (iii) Show that the series $\sum_{n=1}^{\infty} x_n$ converges. Find $\sum_{n=1}^{\infty} x_n$.
- (b) Let $f(x) = x^2 + 7$, $x \in \mathbb{R}$ and let A = [11, 23). Find $f^{-1}(A)$.

Q6

- (a) Let A, B and C be sets. Prove by the method of conditional proof that
 - (i) $A \setminus (B \cap C) \subseteq (A \setminus B) \cup (A \setminus C)$ and
 - (ii) $(A \setminus B) \cap (A \setminus C) \subseteq A \setminus (B \cup C)$.
- (b) A non-empty set X is said to be countable if there is a sequence $< x_n >$ such that $X = \{x_n : n \in \mathbb{N}\}$. Assuming that the interval (0,1) is not countable, prove that for $a,b \in \mathbb{R}$ and a < b, the interval (a,b) is also not countable.