

Final Examination 2020/2021 Level 03 Pure Mathematics PEU3202 Vector Spaces

**Duration: - Two Hours** 

Date: - 30-03-2022 Time: 1.30 p.m. to 3.30 p.m.

## Answer four questions only

1.

- (a) Suppose V is a vector space over a field F. Prove that for all  $\alpha \in F$  and for all  $x \in V \{0\}$ 
  - (a) If  $\alpha \cdot x = 0$  then  $\alpha = 0$
  - (b) If  $\alpha \cdot x = \beta \cdot x$  then  $\alpha = \beta$
- (b) Let  $M = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\}$ . For every  $\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$ ,  $\begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} \in M$ , define  $\begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} + \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix} = \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{bmatrix}$  and  $\alpha \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ c_1 & 3\alpha d_1 \end{bmatrix}$  for  $\alpha \in \mathbb{R}$ , where  $\mathbb{R}$  is the real number field. Is M a vector space over the field of real numbers under these operations? Justify your answer.
- Show that the three vectors  $u_1 = (1, 2, 2)$ ,  $u_2 = (1, -1, 2)$  and  $u_3 = (1, 0, 1)$  form a basis of  $\mathbb{R}^3$

2.

(a) Let V be a vector space over the field F and  $W \subseteq V$ ,  $W \neq \emptyset$ . Show that W is a subspace of a vector space V over F if and only if for all  $\alpha, \beta \in F$  and  $x, y \in W$ ,  $\alpha x + \beta y \in W$ .

- (b) Determine whether following sets are subspaces of the vector space  $\mathbb{R}^3$  over the field  $\mathbb{R}$  under usual addition and scalar multiplication in vector space  $\mathbb{R}^3$ . In each case justify your answer.
  - (i)  $A = \{(a, b, c) \mid a, b, c \in \mathbb{R} \text{ and } b = 2a + a^2\}$
  - (ii)  $B = \{(a, b, c) \mid a, b \in \mathbb{R} \text{ and } a + b = c \}$
- (c) Suppose  $W_1$  and  $W_2$  are subspaces of a vector space V over a field F. Prove that  $W_1 \cap W_2$  is a subspace of the vector space V over the field F.

3.

- Suppose V is a vector space over the field F. Show that if  $\beta \in V$  is a linear combination of the set of vectors  $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n \in V$ , then the set  $\{\beta, \alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n\}$  is linearly dependent.
- (b) If  $\alpha$ ,  $\beta$  and  $\gamma$  are linearly independent vectors in V over a field F, prove that  $\alpha + \beta$ ,  $\beta + \gamma$ ,  $\gamma + \alpha$  are also linearly independent.
- Suppose W is a subspace of a finite dimensional vector space V over the field F, then prove that dim W = dim V if and only if W = V

4.

- (a) Let  $T: V \to W$  be a linear transformation. Show that
  - (i) T(0) = 0
  - (ii)  $\ker T = \{0\}$  if and only if T is one to one.
- (b) Let  $V = \mathbb{R}^2$  and  $W = \mathbb{R}^3$ . Note that V and W are vector spaces over the field  $\mathbb{R}$  under the usual addition and scalar multiplication.

Consider the mapping  $T: V \to W$  defined by T(x,y) = (2x, x + y, x + 2y).

- (i) Show that T is a linear transformation.
- (ii) Find the kernel of T.
- (iii) Is T an Isomorphism? Justify your answer.

5.

(a) Let  $M = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mid a, b, c, d \in \mathbb{R} \}$ . Note that M is a vector space over the field  $\mathbb{R}$  under the usual matrix addition and scalar multiplication.

Let the mapping  $T: M \to M$  be defined by  $T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a+b & b \\ 3c & d \end{bmatrix}$ . Note that T is a linear Transformation

Determine whether the following sets are invariant subspaces of the vector space M over the field  $\mathbb{R}$  under  $\mathbb{T}$ 

(i) 
$$W = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \middle| a, b \in \mathbb{R} \right\}$$

(ii) 
$$W = \left\{ \begin{bmatrix} a & 0 \\ 0 & c \end{bmatrix} | a, c \in \mathbb{R} \right\}$$

(b)

- (i) Define an inner product space.
- (ii) Let V be an inner product space over a field F. Prove that for  $x_1, x_2, y_1, y_2 \in V$ ,  $x_1 + x_2, y_1 + y_2 > = \langle x_1, y_1 \rangle + \langle x_1, y_2 \rangle + \langle x_2, y_1 \rangle + \langle x_2, y_2 \rangle$
- (iii) Let  $u=(x_1,x_2,x_3)$ ,  $v=(y_1,y_2,y_3)$  where  $u,v\in\mathbb{R}^3$ . Define  $< u,v>= x_1^2-x_2^2-x_1x_3$ . Is < u,v> an inner product on  $\mathbb{R}^3$ ? Justify your answer.

6.

- (a) Let u and v be any two vectors of a Euclidian Space.
  - (i) Prove that  $||u + v|| \le ||u|| + ||v||$
  - (ii) Define the angle between u and v
  - (iii) Suppose  $E^3$  is the usual Euclidean three space and  $u, v \in E^3$ . Let u = (1, -1, 2) and v = (2, 1, 0). Find the angle between u and v

(b) Show that the three vectors  $u_1 = (1,1,1)$ ,  $u_2 = (0,1,1)$  and  $u_3 = (0,0,1)$  form a basis for  $E^3$ , the usual Euclidean three space. Construct an orthogonal basis for  $E^3$  out of  $\{u_1, u_2, u_3\}$  using the Gram-Schmidt process.