The Open University of Sri Lanka Faculty of Natural Sciences B.Sc/ B. Ed Degree Programme Department : Mathematics Level : Level 04 Name of the Examination : Final Examination Course Code and Title : PEU4301 - Real Analysis II Academic Year : 2020/2021 Date : 01.04.2022 Time : **02.00 p.m.-04.00 p.m.** ## **General Instructions** - 1. Read all instructions carefully before answering the questions. - 2. This question paper consists of six (06) questions in two (02) pages. - 3. Answer any four (04) questions only. All questions carry equal marks. - 4. Answer for each question should commence from a new page. - 5. Having any unauthorized documents/ mobile phones in your possession is a punishable offense. - 6. Use blue or black ink to answer the questions. - 7. Circle the number of the questions you answered in the front cover of youranswer script. - 8. Clearly state your index number in your answer script. Q1) (a) Let $f(x) = \frac{2x+1}{3x^2+2}$, $x \in \mathbb{R}$. By using the definition of the limit of a function at a point, show that $\lim_{x\to 1} f(x) = \frac{3}{5}$. (b) Let $g(x) = \frac{1}{(x-10)^2}$, $x \in \mathbb{R} \setminus \{10\}$. By using the definition of the infinite limit $+\infty$ of a function at a point, show that $\lim_{x\to 10} g(x) = +\infty$. (c) Let $h(x) = \begin{cases} x^2, & \text{if } x \le 1 \\ \sqrt{x}, & \text{if } x < 1 \end{cases}$. By using $\varepsilon - \delta$ method, show that h is both left-continuous and right-continuous at x=1. Q2) - (a) Let $f(x) = 2x^2 + 1$, $x \in \mathbb{R}$. By using $\varepsilon - \delta$ definition of continuity, prove that f is continuous at any point $c \in \mathbb{R}$. - (b) Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by $$f(x) = \begin{cases} \sqrt{-x}, & x \in (-\infty, 0) \\ 1, & x = 0 \\ \sqrt{x}\sin\left(\frac{1}{x}\right), & x \in (0, +\infty) \end{cases}$$ Show that $\lim_{x\to 0^-} f(x) = 0 = \lim_{x\to 0^+} f(x)$. Is f continuous at x = 0? Justify your answer. Q3) - (a) Let f and g be functions defined on \mathbb{R} . If f and g are continuous at $c \in \mathbb{R}$, prove that f + g is continuous at c by using the $\varepsilon \delta$ definition of continuity. - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \frac{x^2}{x^2 + 1}$. Prove that f is uniformly continuous on \mathbb{R} - (c) By using the Sandwich Theorem, find $\lim_{x\to 0} x^2 \left(1 + \sin\left(\frac{1}{x}\right)\right)$. Q4) (a) Let $f(x) = \frac{2x+3}{x+1}$, $x \in \mathbb{R}$. By using the definition of the derivative of a function at a point, find f'(0). (b) Let $$f(x) = \begin{cases} \frac{x}{1+x}, & \text{if } x \ge 0\\ x^2, & \text{if } x < 0 \end{cases}$$ Prove that the derivative of f does not exist at x = 0. Q5) (a) State the Mean-Value Theorem for Derivatives. Using the above Theorem or otherwise show that for $a, b \in \mathbb{R}$ such that 0 < a < b, $$\sqrt{b} - \sqrt{a} < \frac{b - a}{2\sqrt{a}}.$$ (b) By using Bolzano's Intermediate Value Theorem show that the equation $\sin(10x) = x^2 - 1$ has a solution in the interval (0, 3). Q6) - (a) Let g be a three times differentiable function on [a, b] and g(a) = g'(a) =g(b) = g'(b) = 0. Show that there exists $c \in (a, b)$ such that g'''(c) = 0. - (b) By applying L'Hospital's Rule, compute the limit (if exists) of each of the following indterminate forms. $\lim_{x\to 0} \frac{\sin x - x}{x^2}$ (i) (ii) $\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{\ln x}{(x-1)^2} \right)$ (iii) $\lim_{x \to \infty} \left(1 - \frac{5}{7x} \right)^{2x}$ $\Omega^{(0)}$ is the set of the set of the set of the set of the Ω_{0} . The set of s regione montre contrata en tratale de contrata de trata en estado en partir de trata de la contrata de la cont La desenvación de la desenvación de la contrata de