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Answer five questions by selecting at least two questions from each of the sections A
and B.

Section A
Select at least two questions from this section.

Q1.
(a) Describe controllability and observability. [6]

(b) Consider the system represented by the equation
o~ [0 1 0
10 =73, JJx0+[]uo

y@®=1[1 0]x(t)
Find the transfer function of the system. [8]

(c) Check for the controllability of the system. [6]

Q2.

() Outline the Laplace transform method of determining the state transition ‘matrix
that is required in the solution of'the state equation. [6]
(b) Develop the state equation and the output equation of the circuit shown in
following figure. [14]
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Q3.

(a) Briefly describe Lyapunov’s method for the determination of the stability of non-
linear systems. [6]

(b)Y If % = ax; + bx,and Edfti = cx; + dx,, Determine the sufficient conditions on a, b,
c and d so that the asymptotically stable condition can be achieved. Choose W =
x# + x2 to apply the Lyapunov’s theory. [14]

Q4.

(a) Define the stability of discrete control systems and explain the Jury’'s test of
stability. [6]

(b) Find the output voltage in discrete form of the RC circuit in the following figure
when the input voltage is applied as follows. v

o
:W e
ol

e(t)=e(nT)wherenT<t<(n+1)TandT=1s [14]
Section B
Select at least two questions from this section. . [20 Marks for each]

~ The questions in this section are based on the research paper reproduced at the end of this
question paper. Devote at least half an hour to reading through the paper. Use your own
words in your answers so as to demonstrate that you have understood the concepts
described in the paper, do not copy extracts from the paper itself.

Q5. Explain what is a predictive control system is.
Q6. Discuss two major properties of non-linear control systems.
Q7. Compare unconstrained and constrained minimization process.

Q8. Explain the proposed methodology in the article briefly in your words.
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Model Predictive Control with Nonlinear
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Martin Rau and Dierk Schroder
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Abstract: This paper presents a model predictive con-
trol scheme based on nonlinear state space models. The
considered class of systems is supposed to be separa-
ble into a linear part and a nonlinear feedback path.
Therefore, the overall discrete-time dynamic system is
nonlinear. Most of the ezisting model predictive control
algorithms for nonlinear systems require the solution
of a non—convez nonlinear optimization problem within
the interval of one sample time step. This seems to be
practical impossible in systems with fast sample rates
as they occur in electrical: drive. systems.

In order.to. facilitate the.predictive control algorithm
for real-time: applications, the nonlinear feedback path
is-linearized: dl ¢ trajectory within the pre-
v a liriear time—variant
is mapped to the time
jectoryfor linearization
caneither -be’ th ijectory-in the prediction
horizon:or-mustibe rated-based on other available
informiation ofithe system. The prediction j steps ahead
and:thé:control law:in analogy:to generalized predictive
- control:can be calculated analytically in absence of con-
straints. However, the system’s nonlinearity is taken
into account by the:linearization along a trajectory at
every integration and: prediction step. The inclusion
of .cotistraints in’ the optimizdtion problem results in a
quadratic program for which: efficiént solution methods
exist. This leads to a computationally more practical
_ predictive - control conceptfor  nonlinear systems ap-
plicable to fast processes even in-presence of constraints.

1 Introduction

Model predictive control is a widely used control con-
cept for-over 15 years-especially in the process indus-
try {1, 2; 3, 4] Applications in the field of electrical
drives are quite rare {6]. The core of a model predic-
tive controller is a process model. Any process model,
- capable of predicting future output signals based on fu-
ture input signals and initial values, can be used. With
this process model, the future dynamic behavior of the
real plant is predicted within a prediction horizon Nj.
These predicted output signals are used to minimize
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Fig.1: Principle of model based predictive control.

an open loop ‘performance: criterion (e.g: the-sum-of
squared control errors-within ‘the predietion: horizon)
and to calculate the input: signals u(k): within -a. con-
trol horizen N,. OQutside:the:contre horizon; the input
signal u(k) remains constant: The-calculated:input sig-
nals are fed into the-plant- until a:new .measurement
gets available. This procedure is repéated with a new
prediction and control horizon and is called receeding

“horizon control. The receeding horizon strategy makes

a closed loop control-law from the originally open‘loop
minimization. The minimization step can easily include
constraints, such that input, output or state constraints
can be taken into account already in the controller de-
sign. The principle of model based predictive control
(MPC) is depicted in fig. 1. The most famous rep-
resentative MPC is the generalized predictive controller
(GPC) of [1, 2], which is based on a linear, discrete-time
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transfer function model. A state-space representation
of GPC can be found in [8]. Both can be used for lin-
ear, time-invariant processes only. One main advantage
is the analytical solution of the minimization problem
in absence of constraints. In case of constraints, GPC
results in a quadratic program, for wich very efficient
and fast numerical algorithms exist.

For high precision applications, nonlinear process
models have to be used for prediction [5]. Generally,
this results in a non-convex nonlinear program, which

is difficult to solve due to the following reasons: The’

computational expense for a nonlinear program is much
higher than that of a quadratic program. This restricts
the application of nonlinear process models to relatively
slow processes. A second drawback is the fact, that non-
convex nonlinear programs have several local minima.
Therefore, methods for obtaining the global minimum
have to be applied (which increases the computational
expense even more).

This paper introduces a model predictive control
concept, which combines the advantages of both, linear
an nonlinear process models for prediction. The process
model is assumed to be separable into a linear dynamic
-part-with a nonlinear feedback path. This type of pro-
cess model is called system with isolated nonlinearity.
As in all predictive control concepts, the reference tra-
jectory is known within the prediction horizon. The
nonlinear feedback path is linearized along this trajec-
tory. The resulting system is linear, but time-variant
and is used as‘a prediction model. Its accuracy is better
than'that of a linearized model around one single point
of operation, because the nonlinearity is taken into ac-
count along the whole ‘trajectory. The computational
expense of the linear time-variant model is almost the
same as for a linear time-invariant model. Without con-
sidering constraints, the minimization problem can be
solved analytically and no numerical optimization algo-
rithms need to be applied. When including constraints,
the resulting optimization problem is a quadratic pro-
gram and can be solved with the same efficient algo-
rithms as GPC. In this paper, the higher accuracy of
a nonlinear process model is combined with the ability
to apply quadratic programming techniques for online
optimization.

2 Process Model

Throughout this paper, we will consider single-input
signal-output (SISO) systems. An extension to systems
with multiple in- or outputs is possible without an in-
crease of complexity. The SISO system under consid-
eration is described by a nonlinear discrete time state
space model of degree N with an isolated nonlinearity

M.

x(k+1)
y(k)

A -x(k) + b - Au(k) + k-AMC(y(k)) (1)
T x(k) + d - Au(k)

Au ¥ x(k+1)

X

>
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Fig.2: Signal flow chart of the considered system.

A signal flow chart representation of the model is shown
in fig. 2. The system matrices A, b, ¢, d and k are
constant and of appropriate dimensions. The vector k
describes the coupling of the nonlinearity into the sys-
tem. Au denotes the increment of the input signal be-
tween two sampling instants. Any state-space system
with an input signal v (instead of Au) can be trans-
formed to equation (1) by adding the additional state
variable u(k — 1). The difference operator A is defined
as A=1-2z"1 (z7! being the one-step backward shift
operator). The system matrices have to be known, the
state variables are assumed to be measurable and the
nonlinearity AC may be unknown. If the nonlinearity
and the state variables are not available, a combined
observer and identificator for this class of system can
be applied {10]. For all further calculations, we assume
that the nonlinearity is known and the observed and
real states are identical. In order to take advantage of
a simplified calculation of the control law, the system
model in equation (1) is linearized along the kriown ref-
erence trajectory r(k) of the output signal y(k). The
reference trajectory is the desired output signal of the
system,; it has to be known within the prediction hori-
zon from time step k to k + N3, where Ny is the upper
prediction horizon. The linearization of the isolated
nonlinearity along the reference trajectory r(k) gives

AE((k) ~ AEGr(k)) + DL

- (y(k) —r(k

= IPRUCERC)
= () + 45 G
y=r :

+d- Au(k) — (k) @)

This approximation results in a simplified linear, but
time variant model of the system in equation (1). This
method differs from an ordinary linearization around
a fixed operation point by the fact, that the refer-
ence trajectory (which must be known in any predictive
controller) is the basis for linearization, and therefore
the approximation takes into account the nonlinearity
within the prediction horizon. The resulting linear time
variant model is

x(k +1) = A(k) - x(k) + b(k) - Au(k) + k- v(k) (3)
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with

dNC

) = A+kcT. P

A(k) the g y=r(k) “
dNC

b(k) = b+k-d- 270 ¥

The output equation of (1) is not changed by the lin-
earization. When driving the system along the refer-
ence trajectory, the nonlinearity has the same effect as
a time 'variant disturbance signal v(k). This implies,
that the controller to develop is able to drive the system
near the reference trajectory and does not allow large
deviations. The prediction of future system states and
output signals is performed with the model in equa-
tion (3), where the values of A(k), b(k) and v(k) are
all known within the prediction horizon; they depend
only on the reference trajectory r(k).

3 Predictive Control Law

In this section, we derive the predictive control laws for
the unconstrained and constrained case. The perfor-
mance index of the predictive controller is a weighted
sum of squared control errors and control moves [1]. It
is chosen to ’

Ny N.
J= ) (rlk+i) =gk +5)?+ 2> (Aulk+ )
J=N; j=0

)
Variables marked by ~are predicted values. In equa-
tion (7), k is the:current time step. The upper predic-
tion herizon Ny should be chosen such, that-the dom-
inating  time fesponses lie within this horizon. With
the-lower horizon Ny, it is possible to allow control er-
rors at the beginning of the horizon and to penalize
them between Ny and N; only. The control horizon N,
indicates the number of allowed control moves within
the horizon. After N, control moves, the system input
Aw is zero (u is constant). This is a common:measure
to reduce the:computational expense; although only a
suboptimal solution is found [1, 8]. The:weighting fac-
tor A adjusts the relation between the weighting of:the
control errors and the control moves. The higher A is
chosen, the slower will be the resulting controller.

In order to minimize the cost function (7), future
system: outputs are required. They are not available
but.can. be . predicted based on the system .model in
equation (3). A j-step ahead predictor is derived by
continuing equation (3):

gk+1) = cT-(A(k)- x(k) + b(k) - Au(k) (8)
+ k- u(k)) + dAu(k +1)

gk +2) = cT(A(k+1)Ak)x(k) (9)
+ Ak +1)b(k)Au(k) + b(k + 1)Au(k + 1)

+

Ak + Dku(k) + ku(k + 1)) + dAu(k + 2)
cT (A(k + 2) Ak + 1)A(k)x(k) (10)
Ak +2)A(k + 1)b(k)Au(k)

Ak +2)b(k + 1)Au(k + 1)

b(k + 2)Au(k + 2)

Ak +2)A(k + 1ku(k)

Ak + 2)kv(k + 1) + ku(k +2))

dAu(k +3)

y(k +3)

o+

This scheme can be continued to the upper prediction
horizon Ny, i.e. y(k + N2). In order to facilitate no-
tation, it is convenient to define the following vectors
containing future signals.

v = [y(k+N) y(k+Noy | (11)
Au = [ Au(k) Au(k+N,) 1 {12)
v = [vk) ... vk+N—1)] (13)
r o= [r(k+Np) rk+Ny) ] (14)

where v and r are known in advance, since they only de-
pend on the reference trajectory. The predicted output
signals ¥ are now expressed in matrix-vector form:

y=F.x(k) +H-Au+G-v (15)
The matrices F, H and G are derived from equa-

tions (8) to (10). They are formed according to the
following rules:

0
T I A(k+n).
n={N1—1
0
T [1 A(k+n)
F= n=N, (16)
0
™ JI Afk+n)
L n=Na—1 g
th—l,Nx—l th—l,Nx—Nu -l -
H= : , (1),
hng—1,n,-1 RN —1,Np— I,
The elements of H are:
i—j+1
T I A(k+n)] bk+i—-j) :j>0
n=i
hi!j= cTblk+i—7) :j=0
d j=-1
0 tj<—-1
(18)

The matrix G contains the effects of the nonlinearity
and is defined by:

gN1-1,N1—N:
: (19)

gN2—1,N2—N;

gN;—1,N1—1
G = :

gNy—1,N;—1
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Note, that the dimensions of H and G are different,
since the control horizon N, has only effect on H. The
elements of G are:

i~j+1
cT[ IT A(k+n)]k :3>0
Tk =0
0 :j<0

(20)

9i5 =

With the order N of the system in equation (3), the
matrices have the following dimensions:

F ¢ RN:—N1+1><N HERN’—N‘+1XN“ (21)

G c RN;—N;,-{-IXN; (22)

The cost function of equation (7) is now rewritten in
matrix-vector notation and the minimization problem
is stated. Using the notation of equations (15) to (19),
the cost function is

J = (r-Fx(k) — HAu- Gv)T (r — Fx(k)
HAu— Gv) + AAuTAu (23)

The solution of minimizing equation (23) gives the
vector of control actions Au. The first element of Au
is used as input signal for the real process, all other el-
ements are not used for control, but can serve as initial
values for the next optimization run. The minimization
of (23) and the calculation of the necessary matrices
is'repeated at every integration step. The minimiza-
tion procedure itself depends on whether constraints
are:considered or not.

3.1 Unconstrained Minimization

In:absence of constraints, the minimum of J can be
calculated analytically. By setting the gradient of J to

zero
8J(Au)
Au

and solving the resulting linear equation, the optimal
solution for Au is

0 (24)

Au= (HTH+ ) 'HT (r - Fx(k) - Gv)  (25)

It can easily be shown, that the matrix HTH + AL
(whiich is the quadratic term of (23)) is symmetric and
positive definite for any positive A, which implies, that
the inverse always exists and that the optimum is a
unique minimum. The first element of Au is used as-the
input signal for the process. The following steps have
to be repeated at every integration step: Calculation of
the matrices F, H and G, minimization by evaluating
equation (25) and extracting the first element of Au.
The computational burden compared to linear time-
invariant systems is only increased by the recalculation
of the matrices F to G due to the time-variance of the
prediction model.

The controller parameters Ny, N, N, and A have to
be adjusted according to the dominant time constants

of the process and the desired speed of the closed loop
dynamics. Stability is not guaranteed for every choice
of these parameters [11]; for stability for any choice of
the controller parameters, the infinite horizon predic-
tive control concept [12] may be adopted.

3.2 Constrained Minimization

When considering constraints on the control signals
Au(k), u(k) and the states x(k), the cost function (23)
remains the same. This paper only deals with con-
straints of the input signal u and Au, but state con-
straints can be taken into account in a similar way. In-
put constraints are divided in two types of inequalities:
one for constraints on control increments Au and one
for the resulting input signal u. The control increments
may not exceed a certain minimal and maximal value
as defined by equation (26).

Atumin < Au(k +7) < Aoz ¥V j=0...N, (26)

Equation (26) has to be valid for all time steps inside
the control horizon. The bounds on Aw can be com-
bined in the following linear inequalities with Na,, = I:

Nauw-Au < g, (27)
~Nau-Ou < gh, (28)
The vectors g, and gl are defined as
gttgu = [Aumu: LR AumGI]T (29)
ghu = [-—Aumm e — Aumin}T (30)

In every practical application, the input signal u is
also limited due to actuator saturation. This type of
constraint is given by

Umin LUk +7) € tUmaz ¥ j=0...Ny (31)

Since the free variable of the cost function (23) is Au,
equation (31) has to be transformed into a linear in-
equality in Au. The input signal u(k + j) can be ex-
pressed as
j .
wk+3) =u(k—1)+ 3 Au(k+1)  (32)
i=0
where the value u(k — 1) is known at time step k. The
inequalities of equation (31) can be rewritten in the
optimization variable Awu.

iAu(k +i) <

Umaz — u(k — 1) (33)
i=0
—iAu(k +1i) < —Unin—ulk—1) (34)
i=0

Equations (33) and (34) have to be fulfilled in the con-

trol horizon for j = 0... N, and are again transformed
into a linear system of inequalities.

Nu -Au S g‘:

—N,-Au < gf‘

(35)
(36)
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with the following definitions:

N, = 1 1 : 37)
N
11 -1

gZ = [uma,—u(k - 1) .. uma:x:—u(k - 1)]T (38)

8 = [tmntulk—1)... = tpmim+uk—1)]T
Inequalities (27), (28), (35) and (36) can be com-
bined into one inequality constraint, such that the fol-

lowing quadratic program has to be solved:

rgin.] with N-Au<g (39)

N and g contain all N;-matrices, respectively all gf -
vectors. The quadratic program in equation (39) has
to be solved a every integration step with efficient nu-
merical algorithms (13, 14].

By linearizing the isolated nonlinearity along the ref-
erence trajectory, it was possible to use a accurate, lin-
ear time-variant prediction model and to reduce the re-
sulting optimization problem in presence of constraints
to a quadratic program. This fact makes the proposed
predictive control method a useful tool for real-time
control of fast processes, where nonlinear programming
techniques are not possible.

4 Eﬁcample: Two-Mass System

The following short example, shows some simulation re-
sults for a typical mechatronic drive system. A rotating
two mass system with nonlinear friction characteristic
is investigated. Note, that the emphasis is not on a
sophisticated friction model, but on the predictive con-
trol concept itself. Results for a standard Pl-controller
and the proposed predictive control concept without
constraints are presented to show the impraved per-
formance. The system is described by the following
continuous time state space equation:

4 < 4 1
T 7 T 7
x={ 1 0 21 [x+]0 |0
4 e _d 0
J2 J: J2
A b
0
+ 0 -6.4 - arctan(10 - z3)
L ——
- J2 NC(z3)
k
vy = [00 1]x (41)
~———
CT

The system parameters are: J; = 0.166 [kgm?),
Jo = 033 [kgm’], ¢ = 400 {Nm/rad and d =
0.011 [Nms/rad]. The corresponding discrete time

control resutt

time (s]

Fig.3: Control result with a standard Pl-controller

controt resuit

: reference
: outpu(

time [s]

Fig.4: Control result with the model predictive con-
troller.

model in the form of equation (1) is achieved by dis-
cretization with the zero-order-hold method. The non-
linearity is a simple model for a stick-slip friction char-
acteristic. Its dimension is such, that-the efféct on the
output-signal y is significant. The reference trajectory
is a sine:wave; this may be a perindic positioning proce-
dure. Fig. 3 shows the reference signal and:the output
signal, when the system is controlled by a standard PI-
controller. The negative effect of the friction torque is
especially visible when the output crosses:zero: (stick—
slip). )

‘When:the same system is controlled'by- the. pro-

accuracy is 1mproved by magmtudes

Now ‘we suppose, that the input torque is limited
to 10 [Nm|. This constraint is taken into accourit at
each integration step by solving a quadratic program.
Fig. 6 shows the reference trajectory and the output
signal, fig. 7 shows the corresponding constrained input
torque. The output signal is still very close to the refer-
ence trajectory and the control signal fulfills the desired
constraint. Other constraints for state variables and/or
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input signal u

time [s]

Fig.5: Input signal generated by the model predictive
controller.

control result

time [s]

Fig.6: Control result with the constrained model pre-
dictive controller.

the output signal, e.g. overshoot constraints, could be
introduced to improve the dynamic behavior.

5 Conclusion

The proposed nonlinear model predictive control con-
cept is-able to take into account an isolated nonlinearity
by linearizing along the reference trajectory in the pre-
dietion horizon. This is:more accurate than a linieariza-
tion only at each integration step. The main property
of linear model predictive control, the quadratic opti-
mization -problem, is preserved. This is a great com-
putatjonal advantage when including constraints in the
optimization procedure. The motivation for this.con-
trol concept is the fact, that the isolated nonlinearity is
taken into account in the controller and the optimiza-
tion problem remains easy to solve (analytically or by
a quadratic program). The proposed method is prac-
tically relevant due to the reduced computation com-
pared to nonlinear model predictive controllers.
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