00004

The Open University of Sri Lanka

Faculty of Engineering Technology

Department of Mechanical Engineering

: Bachelor of Technology Honours in Engineering

Name of the Examination

Final Examination

Course Code and Title

: MEX6230/ DMX6530 Mechanics of Materials

Academic Year

2019/20

Date

: 07th October 2020

Time

1330 hours -1630 hours

Duration

3 hours

General instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of eight (08) questions and four (04) pages.
- 3. Answer any 05 questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page
- 5. Relevant charts/ equations are provided.
- 6. This is a Closed Book Test (CBT).
- 7. Answers should be in clear handwriting.
- 8. Do not use Red colour pen.

Question 01 - (20 marks)

- (a) Explain the following terms
 - i. Stress tensor
 - ii. Volumetric strain
- (b) What is meant by the term "index notation"?
- (c) The state of stress at a point is given by,

$$\sigma_{xx} = 100MPa$$

$$\sigma_{vv} = 45MPa$$

$$\sigma_{zz} = -80MPa$$

$$\sigma_{xy} = -45MPa$$

$$\sigma_{vz} = 33MPa$$

$$\sigma_{xx} = -75MPa$$

Determine;

- i. The magnitude of maximum principle normal strain
- ii. The maximum principle shear strain at the point

The Young's Modulus is given as 207GPa and Poisson's ratio is 0.3.

Question 02 – (20 marks)

- (a) Discuss five causes of fatigue failures and five methods by which the fatigue strength of materials can be increased.
- (b) Write short notes on the following.
 - i. Stress relaxation
 - ii. Creep test
 - iii. Griffith crack theory

Question 03 – (20 marks)

(a) Write down all six independent stress components in terms of strains using the constants E and v.

Figure Q03

(b) For an element subjected to a two-dimensional stress as shown in Figure Q03, verify that the Young's Modulus (E) and the Poisson's ratio (v) are given by

$$E = \mu(3\lambda + 2\mu)/(\lambda + \mu)$$
 and $\nu = \lambda/(\lambda + \mu)$

Where;

 λ and μ are constants.

Question 04 - (20 marks)

- (a) State the Airy's stress function for 2-D state of stress.
- (b) The Airy's stress function $\emptyset = Ay^3 + By^2 + Cx$ represents the 2-D plane stress beam problem shown in Figure Q04. The beam is unit thickness and depth \mathcal{L} . Determine the values of the constants A, B, and C.

Figure Q04

Question 05 - (20 marks)

- (a) Briefly discuss the following, underlining the main differences among them.
 - i. Plane Polarisation
 - ii. Circular Polarisation
 - iii. Elliptical Polarisation.
- (b) Describe how you would use a polariscope to determine the principal stresses and the principal directions at different points in a given specimen.
- (c) Describe the difference between isoclinics and ischromatics.

Question 06 - (20 marks)

- (a) Determine the intensities of principal stress in a flat steel disc of uniform thickness having a diameter of 1m and rotating at a speed of 2400 rpm.

 Take Poisson's ratio (v) = 1/3 and the density of the material (ρ) = 7850 kg/m³.
- (b) What will be the stresses if the disk has a central hole of **0.2m** diameter?

 Note: The intensities of radial and circumferential (or hoop) stresses are given by:

$$\sigma_r = \frac{c_1}{2} + \frac{c_2}{r^2} - \left[\frac{3 + \frac{1}{m}}{8} \right] \rho \omega^2 r^2$$

$$\sigma_r = \frac{c_1}{2} + \frac{c_2}{r^2} - \left[\frac{3 + \frac{1}{m}}{8} \right] \rho \omega^2 r^2$$

Question 07 – (20 marks)

- (a) By giving suitable examples describe how you would improve fatigue resistance in machine components.
- (b) A structure is composed of circular members of diameter d. At a certain position along one member the loading is found to consist of a shear force of 10 kN together with an axial tensile load of 20 kN. If the elastic limit in tension of the material of the members is 270 MN/m² and there is to be a factor of safety of 4, estimate the magnitude of d required according to,
 - i. the maximum principal stress theory,
 - ii. the maximum shear strain energy per unit volume theory.

Where; Poisson's ratio v = 0.283.

- (a) Explain why electrical resistance strain gauges are very popular for strain measurements.
- (b) Describe briefly how you would experimentally determine the principal stresses present in a machine element under the action of a complex stress system, with the aid of a strain gauge.
- (c) The state of strain at a point on a bracket is measured using the strain rosette shown in Figure Q08.

Figure Q08

The readings from the respective strain gauges are

$$\epsilon_a = 225 \times 10^{-3}, \, \epsilon_b = 220 \times 10^{-3}, \, \epsilon_c = 130 \times 10^{-3}$$

Determine the in-plane principal strains and the directions along which they act at the point under consideration.

ALL RIGHT RESERVED