The Open University of Sri Lanka Faculty of Engineering Technology Department of Electrical & Computer Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination : EEX6550 / ECX6250 Analog Electronic Systems

Course Code and Title

: 2019/2020

Academic Year

: 23rd January 2021

Date Time

: 1330-1630hrs

Duration

: 3 hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Seven (7) questions in Six (6) pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. Relevant charts / codes are provided.
- 6. This is a Closed Book Test (CBT).
- 7. Answers should be in clear hand writing.
- 8. Do not use red colour pens.

Q1. Consider the circuit diagram in Figure-Q1.

- (a) Draw the high frequency equivalent circuit for the single stage amplifier shown in Figure-Q1. (7Marks)
- (b) Clearly stating all your assumptions, find an expression for the voltage gain, A_v .

 (8Marks)
- (c) Hence show that the low frequency voltage gain for this amplifier is $\frac{\mu}{\mu+1}$, where $\mu = \frac{g_m}{g_d}$. (5Marks)
- Q2. Let the transistor in the amplifier circuit in Figure-Q2 has the following hybrid- π parameters with the usual notation. $r_{be}=1k\Omega$, $r_{bc}=4M\Omega$, $r_{ce}=80k\Omega$, $C_{bc}=3pF$, $C_{be}=100pF$ and $g_m=50mAV^{-1}$. Assume the effect of all the other unmentioned parameters to be negligible.
 - (a) Draw the high frequency equivalent circuit for this amplifier circuit. (6Marks)
 - (b) Using Miller's theorem, simplify the equivalent circuit model. (6Marks)
 - (c) Hence, find the voltage gain of the same amplifier. (8Marks)

Figure-Q2

Q3. Consider the circuit in the Figure-Q3.

Figure-Q3

Assume that $r_{d1}=r_{d2}\to\infty$, $g_m=1.6~mAV^{-1}$ for both Q1 and Q2. (a) Draw the low frequency equivalent circuit.

(8Marks)

Hence find,

(b) Input impedance.

(4Marks)

(c) Mid band voltage gain $\frac{v_L}{v_S}$.

(8Marks)

Figure-Q4

For the amplifier circuit shown in Figure-Q4, $V_{CC}=10~V$, $R_1=10k\Omega$, $R_2=2.2k\Omega$, $R_C=3.6k\Omega$, $R_E=1k\Omega$, $r_e=100\Omega$, $R_L=10k\Omega$ and $R_f=4.7k\Omega$. Both transistors Q1 and Q2 are identical and have $h_{fe}=100$, $h_{ie}=1.2k\Omega$.

(a) Identify the type of feedback used.

(2Marks)

- (b) Consider the circuit in Figure-Q4 without the feedback. Calculate the voltage gain and the input impedance. (10Marks)
- (c) Calculate the feedback ratio.

(4Marks)

(d) Hence calculate the overall voltage gain with feedback.

(4Marks)

Q5.

- (a) Starting from the first principles, derive the Barkhousen criteria for oscillations to occur. (4Marks)
- (b) Stating all your assumptions, derive an expression for the feedback factor for the circuit in Figure-Q5.(4Marks)
- (c) Derive an expression for the forward gain.

(6Marks)

(d) Hence find the frequency of oscillation ($C = 100 \mu F$, $L_1 = L_2 = 10 mH$, $R_1 = R_2$).

(6Marks)

Figure-Q5

Q6. A low-pass filter circuit is shown in Figure-Q6. Assume that the op-amp is ideal.

Figure-Q6

- (8 Marks) (a) For the circuit in Figure-Q6, derive the transfer function H(s).
- (b) Transfer function for a second order Butterworth filter is given by,

$$A(s) = A_0 \frac{1}{\left(\frac{s}{\omega_c}\right)^2 + \sqrt{2}\left(\frac{s}{\omega_c}\right) + 1}.$$

Hence show that the bandwidth of the above filter is given by $\frac{1}{2\pi\sqrt{R_3R_4C_1C_2}}$ (4 Marks)

- (c) Let $R_3 = R_4$ and $C_1 = C_2$. Design a second order Butterworth filter with a (4 Marks) bandwidth of 20Hz.
- (4 Marks) (d) Calculate the pass band gain of the filter.

- (a) Starting from the diode characteristic equation $I_D = I_S \left(e^{\frac{V_D}{\eta V_T}} 1 \right)$ derive an expression for the intrinsic resistance, r_e of the diode junction. (4 Marks)
- (b) Figure-Q7(b) shows a diode-based log amplifier. Show that $V_o \propto \ln(V_{in})$. (8 Marks)

Figure-Q7 (b)

(c) Explain the operation of the precision rectifier arrangement shown in Figure-Q7 (c). (8 Marks)

