THE OPEN UNIVERSITY OF SRI LANKA

Faculty of Engineering Technology
Department of Mathematics & Philosophy of Engineering

Bachelor of Technology Honors in Engineering / Bachelor of Software Engineering Honors

Final Examination (2019/2020) MHZ5340 / MHZ5360 / MPZ5140 / MPZ5160: Discrete Mathematics II

Date: 02nd August 2020 (Sunday)

Time: 13:30 - 16:30

Instruction:

- Answer only six questions.
- Please answer a total of six questions choosing at least one from each single section.
- All symbols are in standard notation and state any assumption that you made.

SECTION - A

Q1.

- i. Let A be any nonempty set with the operation " * " defined by x * y = 2(x + y) + 3xy. Is the operation,
 - a. Associative?
 - b. Commutative?

Justify your answer.

[30%]

- ii. Define an abelian group in usual notation. Prove that $\mathbb{R}\setminus\{-\frac{1}{2}\}$ is an abelian group with respect to the binary operation defined on $\mathbb{R}\setminus\{-\frac{1}{2}\}$ by x*y=x+y+2xy.
- iii. Define a semi group in usual notation. Let " * " be operation on $\mathbb R$ defined by the following way:

$$x * y = 5(x + y)$$

Find that whether $(\mathbb{R}, *)$ is a semi group.

[25%]

Q2.

- i. Let $G = \{\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} | a, b, d \in \mathbb{Z}, ad \neq 0 \}$. Show that G is a group under usual matrix multiplication.
- ii. Let (G,*) be a group. If $a,b \in G$. Suppose that $a*b=b*a^{-1}$ and $b*a=a*b^{-1}$. Show that $a^4=b^4=e$. [40%]

Q3.

- i. Define a homomorphism and Isomorphism for group in usual notation. [20%]
- ii. For a fixed element in a group G, define $f_a: G \to G$ by $f_a(x) = a^{-1} x a$, for all $x \in G$. Show that f_a is a homomorphism. [40%]
- iii. Let $G = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \middle| a \in \mathbb{R} \right\}$, and $G' = \mathbb{R}$. Assuming that G and G' are groups under the usual matrix multiplication. Let the mapping $\phi \colon G \to G'$, defined by $\phi(A) = a$ where $A = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$ for all $A \in G$. Show that ϕ is an Isomorphism.

SECTION - B

Q4.

i. Define a simple graph.

[15%]

ii. By drawing each of the following graph, determine whether which of those graphs are simple or not. [45%]

a.
$$G_1 = \{V_1, E_1\}$$
 where $V_1 = \{1, 2, 3, 4, 5, 6\}$ and $E_1 = \{\{x, y\} \ 2x + y \ is \ even \ and \ x \le y\}$

b.
$$G_2 = \{V_2, E_2\}$$
 where $V_2 = \{1, 2, 3, 4, 5, 6, 7\}$ and $E_2 = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 5\}, \{2, 6\}, \{3, 6\}, \{4, 5\}, \{4, 7\}\}$

c.
$$G_3 = \{V_3, E_3\}$$
 where $V_3 = \{1, 2, 3, 4, 5, 6\}$ and $E_3 = \{\{i, j\} | i \times j \text{ is a divided by 2 and } i < j\}$

iii. Let G be a graph of 8 vertices and 13 edges in which every vertex is of degree 3 or 4. How many vertices of degree 3 and 4 does G have? Construct one such graph G. [40%]

Q5.

i. Define a tree graph and the forest.

[10%]

ii. Is it possible to draw the each of the following case:

[40%]

- a. A tree with 11 vertices, each of which has either degree 1 or degree 3.
- b. A tree with 13 vertices, exactly 9 of which have degree of one.

iii. Suppose that Ajith, Bandara, Chamara, Dias, Erika, Fernando and Geetha are planning a quiz. They are assigned to work on the following subjects: [50%]

A – Calculus: Ajith, Chamara, Dias

B - Analysis: Chamara, Fernando

C – Algebra: Fernando, Ajith

D - History: Bandara, Dias, Erika

E – English: Erika, Geetha

F - Psychology: Erika, Fernando, Geetha

They want to know how many meeting times are necessary in order for each subject to meet once. Let the vertices of a graph be A, B, C, D, E, F and the edges of a graph represent common members in subjects.

- a. Draw the graph representing the above relationship.
- b. Find the degree for each vertex of the graph.
- c. Write down the adjacency matrix for the graph.

Q6.

i. Define the connected graph.

[10%]

ii. G is the graph whose adjacency matrix A is given by

[50%]

$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

- a) Without drawing a graph of G, determine whether G is connected or not.
- b) If $V(G) = \{a, b, c, d\}$ then find the number of paths of length four joining vertices d and b.
- c) Draw the graph of a adjacency matrix A.
- iii. Let G = G(V, E) be a connected graph with at least two vertices and suppose that |E(G)| < |V(G)|. Prove that, G has at least one vertex of degree one. [40%]

SECTION - C

Q7.

- i. Iterate the Eco-system growth for the relation $k_{n+1} \lambda k_n = 0$ for $k_0 = 0.4$, taking $\lambda = 0.4$ and $\lambda = 1.4$, and draw the diagram. Hence deduce k_n as $n \to \infty$. (At least 5 iteration steps are necessary)
- ii. Iterate the Eco-system growth model relationship $y_{n+1} \lambda y_n + \lambda y_n^2 = 0$, where $\lambda = 2.5$ and $y_0 = 0.2$ and draw the diagram. Hence deduce k_n as $n \to \infty$. (At least 5 iteration steps are necessary)
- iii. Draw the graph for the relation $Z_{n+1}=Z_n^2$, where $Z_0=1.5+0.2i$. Find Z_5 and hence deduce Z_n as $n\to\infty$.

Q8.

A three-dimensional system is governed by the following system of differential equations:

$$\frac{dx}{dt} = 3x + 2y - 2z$$

$$\frac{dy}{dt} = 2x + 3y - 2z$$

$$\frac{dz}{dt} = -2x - 2y + 3z$$

where x, y and z are function of t and at t = 0, (x, y, z) = (1, 0, 1). Find the phase space value x(t), y(t), z(t) for t = 1, 2.

[100%]

Q9.

- I. Let $L_1=\{1,11,111\}$ and $L_2=\{2,22,222\}$ be languages. Find a) L_1L_2 , [10%] b) L_2L_1 .
- II. Show that the string (-t*t) + (tnt) is a sentence generated by the grammar G, where, $G = \{\{S, K\}, \{+, *, -, (), t, n\}, P, S\}$ and starting symbol S and production P.

$$P = \{S \rightarrow SKS, S \rightarrow t, S \rightarrow (S), S \rightarrow S * S, S \rightarrow -S, K \rightarrow +, K \rightarrow -, K \rightarrow n\}.$$

III. Draw the directed graph that describers the DFA (Deterministic Finite Automation) with the following state transition table. [25%]

State	Input				Output			
	а	b	С	d	a	b	c	d
S_{n}	s_0	S ₁	s_2	S_1	1	0	0	0
S ₁	S ₁	S_0	S_1	S_2	1	1	1	1
S_2	s_0	s_3	S_2	S_1	0	1	0	0
S ₂	s_2	S ₃	S ₁	S ₄	1	0	1	0
	S ₄	Sa	S ₄ .	S ₄	0	1	1	1

Initial state s_0 and accepting state s_4 .

IV. Draw Let M be a Mealy machine. Let $s \in S$, $a, b \in I$ and $s \in I^*$ and defined functions. [30%]

$$\delta: S \times I^* \to S$$
 and $\beta^*: S \times I^* \to O^*$ by

$$\delta^*(s,\Omega)=s,$$

$$\delta^*(s, a, x') = \delta^*[\delta(s, a), x'],$$

$$\beta^*(s,\Omega) = \Omega,$$

$$\beta^*(s, a, x') = \beta(s, a)\beta^*[\delta(s, a), x'].$$

The two-frame binary pipeline devise hold up two binary as in the following table,

State		Input		Output			
	a	b	С	a	b	c	
00	11	10	10	0	1	1	
01	01	00	01	l	0	1	
10	01	10	11	0	1	0	
11	11	10	00	1	0	1	

Find the two-frame binary pipeline buffer and work out its response to the sequence *aacbcbba* from the state 10.

