The Open University of Sri Lanka Faculty of Engineering Technology

Study Programme

Bachelor of Technology Honours in Engineering

Name of the Examination

Course Code and Title

Final Examination

DMX 4575/MEX4275

DMX4205/ Strength of Materials I

Academic Year

2019/20

Date

30th July 2020

Time

0930hrs - 1230hrs

Duration

3 hours

General instructions

1. Read all instructions carefully before answering the questions.

- 2. This question paper consists of Eight (8) questions in Six (6) pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. This is an Open Book Test (OBT) / Closed Book Test (CBT).
- 7. Answers should be in clear hand writing.
- 8. Do not use red colour pen.

Question No.01:

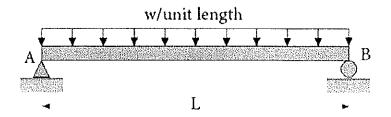


Fig.Q1

A simply supported beam AB shown in Fig.Q1 is subjected to a uniformly distributed load of w per unit length. Modulus of flexural rigidity (EI) is constant throughout the beam,

Draw the free body diagram for the above loading system

- b) Find the equation of elastic curve, and hence determine
 - i) the maximum slope of the beam and
 - ii) the maximum deflection of the beam

Question No.02:

a) State the simple torsion formula with usual notations. Explain the meaning of each symbol in the formula with their relevant units.

b)

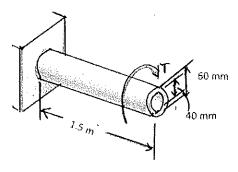


Fig.Q2

Fig.Q2 shows a hollow cylindrical steel shaft 1.5m long and has inner and outer diameters 40 mm and 60 mm respectively.

- i) What is the largest torque that can be applied to the shaft if the shearing stress is not to exceed 120 MPa?
- ii) What is the corresponding minimum value of the shearing stress in the shaft?

Question No.03:

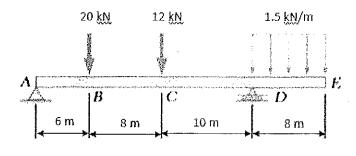


Fig.Q3

A beam AE, simply supported at A and D, is subjected to 20 kN and 12 kN loads at B and C respectively and a 1.5 kN/m uniformly distributed load over DE as shown in Fig.Q3.

- a) Draw the shear force and bending moment diagram for the beam AE
- b) Hence find the magnitudes of maximum shear force and maximum bending moment, and their locatons on the beam.

Question No.04:

a) State the simple bending formula with usual notations. Explain the meaning of each symbol in the formula with their relevant units.

b)

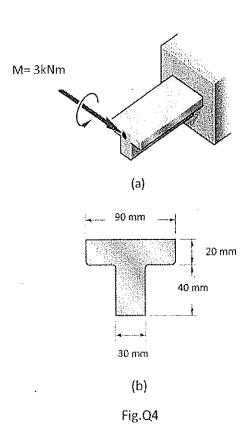
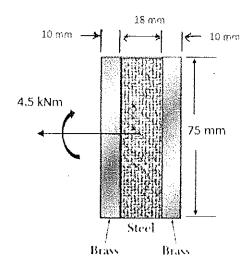



Fig.Q4(a) shows a cast-iron machine part, which is acted upon by a 3 kN-m couple and Fig.Q4(b) shows the cross-sectional dimensions of the beam. Knowing E = 165 GPa and neglecting the effects of fillets, determine

- i) the maximum tensile and compressive stresses and
- ii) the radius of curvature of the beam.

Question No.05:

`Fig.Q5

Fig Q5 shows a cross-section of a composite bar, which is made of bonded pieces of steel having the modulus of elasticity (E_s), 200 GPa and two pieces of brass having modulus of elasticity of (E_b) 100 GPa and applied 4.5 kNm moment on it.

- a) Transform the bar to an equivalent cross section made entirely of brass.
- b) Evaluate the cross-sectional properties of the transformed section.
- c) Calculate the maximum stress in the transformed section.
- d) Determine the maximum stress in the steel and brass when a moment of 4.5 KNm is applied.

Question No.06:

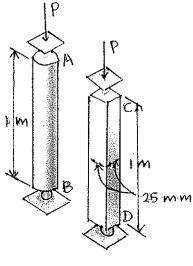
a) Show that the Euler formula for buckling of struts with both ends are hinged can be written as

Euler crippling load,
$$P_e = \frac{\pi^2 EI}{4l^2}$$

Where

Pe - Critical load , I - Length of the strut, E - Modulus of elasticity, I - Second moment area of the section of the column

b)



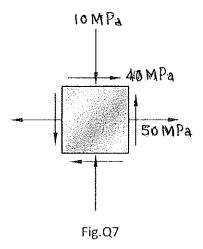

Fig.Q6

Fig.Q6 shows two struts made of same material and same length 1 m, having cross-sections of one is circular and the other square with an area of (25mm x 25mm). Both struts are subjected to a compressive load, **P** as shown in Fig. Q6 and the modulus of elasticity of the material E is 200GPa.

Determine,

- i) the radius of the cross section of the circular strut so that the both circular and square struts have the same cross-sectional area and
- ii) the critical load for each strut.

Question No.07:

- a) For the state of plane stress shown in Fig. Q7, construct Mohr's circle.
- b) Hence determine,
 - i) the principal planes,
 - ii) the principal stresses,
 - iii) the maximum shear stress and the corresponding normal stress.

Question No.08:

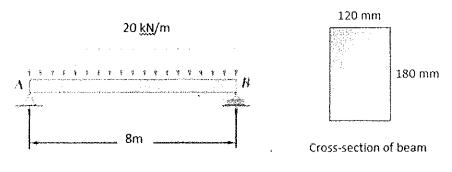


Fig.Q8

A stainless-steel beam (AB) of span 8 m, simply supported at A and B carries a UDL of 20 kN/m over its entire span. The cross-section of the beam is a rectangle with dimensions 120 mm x 180 mm as shown in the Fig. Q8.

- a) Find the reactions at supports A and B
- b) Determine the shear stresses at planes 30 mm, 60 mm and 90 mm from the top plane.
- c) Draw the shear stress distribution at the section 1 m from the left support, by considering horizontal planes 30 mm apart from top to bottom in the cross section.

END