THE OPEN UNIVERSITY OF SRI LANKA

Faculty of Engineering Technology Department of Mathematics & Philosophy of Engineering

Bachelor of Technology Honors in Engineering / Bachelor of Software Engineering Honors

Final Examination (2019/2020) MHZ4340 /MHZ4360/ MPZ4140 /MPZ4160: Discrete Mathematics I

Date: 28th July 2020 (Tuesday) Time: 13:30 – 16:30

Instruction:

- Answer only six questions.
- Please answer a total of six questions choosing at least one from each single section.
- All symbols are in standard notation and state any assumption that you made.

SECTION - A

Q1.

- 1. Decide which of the following are propositions. What are the truth values of those that are propositions? [20%]
 - a) " $x^2 \ge 10$ ";
 - b) "5 + 7 = 10";
 - c) "Colombo is in England or 1 + 9 = 8".
 - d) "London is the capital of India".
- II. State the "convers", "inverse", and "contrapositive" of each of the following statement: [30%]
 - a) If x is an integer and x^2 is odd, then x is odd;
 - b) If 11 pigeons live in 10 birdhouses, then there are two pigeons that live in the same birdhouse.
- III. Let p, q, and r be three statements.

Verify that each of the following statement is a tautology or not.

[30%]

- a) $((p \to q) \to r) \to (p \to (q \to r))$
- b) $(p \to (r \lor q)) \to ((p \to r) \lor (p \to q))$
- IV. Determine the truth value and Negation of the each of the following statements:

[20%]

- a) $\forall x \in \mathbb{R}$, $(x^2 \ge x)$;
- b) $\exists x \in \mathbb{R}, (x = 1).$

Q2.

	I.	Test the validity of the following arguments: a) If I want to be a lawyer, then I want to study logic. If I don't want to be a lawyer, then I don't like to argue.	
		Therefore, If I like to argue, then I want to study logic.	[30%]
		b) If Mohan goes to town, then Melani stays at home. If Melani does not stay at home, Rita will cook. Rita will not cook.	
		Therefore, Mohan does not go to town.	[30%]
	II.	By using truth tables, prove De.Morgan laws of propositions.	[20%]
	III.	Prove directly that the "if n is an odd integer, then n^2 is odd".	[20%]
Q3.	I.	Show that $\sqrt{2}$ is an irrational number.	[20%]
	II.	Using Mathematical induction, for a positive integer n , prove each of the following: a) $\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2)$ for all $n \ge 1$;	[60%]
		b) $2^{3n+1} + 5$ is divisible by 7.	
	III.	By giving a counter example, disprove each of the following statements: a) all odd number are divisible by 3;b) the square root of any integer is irrational.	[10%] [10%]

SECTION – B

Q4.

I. Write down the elements in each of the following set:

[20%]

- a) $A = \{x: x^4 5x^2 + 6 = 0, x \in \mathbb{R}^+\};$
- b) $B = \{x: x \ge 14, x = 2n + 1, n \in \mathbb{Z}^+\};$
- c) $C = \{x: x^2 + 1 = 10, x \in \mathbb{N} \},\$
- d) $D = \{x: |x+3| \le 6, x \in \mathbb{Z}^+ \}.$
- II. $L = \{9, 19, 29, 39, 49\}, M = \{39, 49, 59, 69\}, N = \{59, 69, 79, 89\}.$ Find
 - a) $L \oplus M$;
 - b) $M \oplus N$;
 - c) $L \cap (M \oplus N)$, where \oplus is symmetric difference.

[15%]

III.

a) Define the Cartesian product of set A and B.

[05%]

b) $A = \{a, b, ab, ba\}$ and $B = \{1, 12, 21\}$. Find $A \times B$ and A^2 .

[20%]

IV. Let $E = \{e, d, ed, de\}$. Find the power set P(E) of E.

[10%]

V. Without using Venn diagram, Show that

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

[30%]

Q5.

I. Let $h: \mathbb{R} \to \mathbb{R}$ be defined by

$$h(x) = \begin{cases} x+7 ; & x \le 0 \\ -2x+5; & 0 < x < 3 . \\ x-1; & x \ge 3 \end{cases}$$

Find h(-3), h(0), and h(3).

[30%]

II. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = ax^2 + b$ and $g(x) = cx^2 + d$ respectively for all $x \in \mathbb{R}$, where a, b, c, and d are constants with $a \neq 0$ and $c \neq 0$.

Find the relationship(s) between the constant a, b, c, d, if $f \circ g(x) = g \circ f(x)$ for all x. [30%]

III. Let $A = \mathbb{R} - \{3\}$ and $B = \mathbb{R} - \{1\}$. Define $m(x) = \frac{x-2}{x-3}$. Prove that m(x) is invertible and find a formula for $m^{-1}(x)$. [40%]

Q6.

- I. Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 2, 3, 4, 5\}$. In each of the following, find all the pairs of A x B that belong to R_1 and R_2 .
 - a) $R_1 = \{(x, y) | x \ge y; x \in A, y \in B\}$ b) $R_2 = \{(x, y) | x^2 = y; x \in A, y \in B\}.$

[10%]

b)
$$R_2 = \{(x, y) | x^2 = y; x \in A, y \in B\}$$

[10%]

II.

a) Define the equivalence relation by the usual notation.

[10%]

- b) Determine whether the following relations are equivalence relation or not.
 - α) Let A be a set if integers and R_3 be the relation of $A \times A$ defined by $(a,b)R_3(c,d)$ if ad = bc. [25%]
 - β) If R_2 be the relation which is defined by " aR_2b iff a-b is divisible by 10" for $a, b \in \mathbb{Z}$. [25%]
- III. Show that " $x \le y$ " is a partial order relation in \mathbb{R} , where $x, y \in \mathbb{R}$.

[20%]

SECTION - C

Q7.

I. Let a, b, and c be any integer numbers. Prove that.

[45%]

- a) if a|b and a|c, then 2a|(4b+6c),
- b) if a|b, and b|c, then a|c,
- c) If a|b and b|a, then $a = \pm b$.
- Let $x, y \in \mathbb{Z}$. If $6|(3x y^2)$, then show that $3|(3x^2 3xy xy^2 + y^3 + 24x)$. II.[20%]
- III. If gcd(a, m) = gcd(b, m) = 1, then show that gcd(ab, m) = 1. [20%]
- IV. Show that gcd(na, nb) = n gcd(a, b), for any positive integer n. [15%]

Q8.

I. Let a and b be integers. Show that
$$gcd(a,b) = gcd(a+3b,2b)$$
. [10%]

- II. Let a and b are integers and gcd(a,b) = 1. Prove that gcd(ac,b) = gcd(c,b), where $a,b,c \in \mathbb{Z}$. [15%]
- III. Show that if a and b are relatively prime numbers, then gcd(2a + 3b, 3a + 2b) = 1 or 5. [30%]
- IV. Use the Euclidean algorithm to find the greatest common divisor of 3356 and 246 and express it in terms of the two integers. [25%]
- V. Either find all solutions or prove that there are no solutions for the Diophantine equation 2080x + 347y = 5. [20%]

Q9.

I Let a, b, c and d denote integers. Let m be a positive integer. Show that:

a) If
$$a \equiv b \pmod{m}$$
 and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$. [10%]

b) If
$$a \equiv b \pmod{m}$$
, $c \equiv d \pmod{m}$, and $e \equiv f \pmod{m}$,
then $(3a - 2c + 5e) \equiv (3b - 2d + 5f) \pmod{m}$. [20%]

c) If
$$a \equiv b \pmod{m}$$
 and $d \mid m, d > 0$, then $a \equiv b \pmod{d}$. [15%]

II Solve the following system of congruence:

[55%]

$$x \equiv 2 \pmod{5}$$

$$x \equiv 5 \pmod{11}$$

$$x \equiv 7 \pmod{13}$$

$$x \equiv 3 \pmod{17}$$

