

The Open University of Sri Lanka Faculty of Engineering Technology

Bachelor of Industrial Studies Honors (Agriculture)

Final Examination- 2020/2021

AGI6478/AGX6535 Hydrology and Water Resources

Date

19-01-2022

Time

: 14.00-17.00 hours

SECTION 2: Answer any four (04) questions. All questions carry equal marks.

1. (a). Briefly describe the components of Hydrograph.

(b). The 4-hour unit hydrograph for a 550 km² catchment is given below. An uniform-intensity storm of 4 hours' duration with an intensity of 6 mm/h is followed after a 2 hour break by a further uniform-intensity storm of 2 hours duration and an intensity of 11mm/hr. The rain loss is estimated at 1mm/hr on both storms. Base flow was estimated to be 10m³/s at the beginning of the first storm and 40m³/s at the end of the runoff period of the second storm. Compute the likely peak discharge and its time of occurrence.

Q	Hours	Q
m^3/s		m^3/s
0	12	62
11	13	51
71	14	40
124	15	31
170	16	24
198	17 .	17
172	18	11
147	19	5
127	20	3
107	21	0
90		
76		
	0 11 71 124 170 198 172 147 127 107 90	m ³ /s 0 12 11 13 71 14 124 15 170 16 198 17 172 18 147 19 127 20 107 21 90

- 2. (a). Differentiate between **unconfined** aquifer and a **confined** aquifer?
 - (b). Briefly describe the pumping test procedure and its importance in groundwater
 - (c). A well is pumped at a rate of 2000m³/day for 3 hrs. The drawdown in an observation well 120m away is measured with time and is given below. Calculate the transmissivity and storage coefficient of the aquifer using Cooper & Jacob's equation

Time since	Drawdown	Time since	Drawdown
pump started	(m)	pump started	(m)
(minutes)		(minutes)	
1	0.05	18	0.55
1.5	0.08	24	0.61
. 2	0.11	30	0.65
2.5	0.15	40	0.69
3	0.16	50	0.73
4	0.20	60	0.76
5	0.24	80	0.79
6	0.28	100	0.83
8	0.35	120	0.87
10	0.40	150	0.91
12	0.43	180	0.95
14	0.46		

- 3. (a). Briefly explain the important physical, chemical and biological properties of water and also explain how you would measure them.
 - (b). List the common pollutants which lead to reduce surface water quality.
 - (c). Briefly describe the possible sources of contamination of groundwater and describe what steps you would take to minimize the contamination.
- 4. (a). Briefly explain and compare the aquifer yields in unconsolidated materials, sedimentary rocks and crystalline rocks.
 - (b). A cofferdam is built for the construction of a dam. The construction period is 2 years. A plot of annual peak flows against probability for the river flows showed that 10000 m³/s would be exceeded 10% of the time. What is the chance that 10000 m³/s would be exceeded in the 2 years?

- 5. (a). Briefly explain the different types of wells available in Sri Lanka and its advantages and disadvantages.
 - (b). A well in a confined aquifer of thickness of D is pumped at a rate of Q. Diameter of the well is r_0 , water level in the well is h_0 and the height of rest water level is H above datum. Neglect well losses. Take hydraulic conductivity as k. Derive an expression for the height of water table at a distance from the centre of the well. Assume steady state conditions.
- 6. Write brief note on any three (03) of the following
 - (b) Sitting of rain gauge
 - (c) Infiltration indices
 - (d) Aquifer particle size analysis
 - (e) DRASTIC method

.....END OF PAPER.....

