The Open University of Sri Lanka Faculty of Engineering Technology Department of Electrical & Computer Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: EEX5360- Signals and Systems

Academic Year

: 2020/2021

Date

: 09th February 2022

Time

: 1400-1700hrs

Duration

: 3 hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Six (06) questions in five (05) pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. This is a Closed Book Test (CBT).
- 6. Answers should be in clear handwriting.
- 7. Do not use a red color pen.
- 8. Adhere to usual notations.

1. Figure 1 shows a passive RC circuit with a voltage source.

Figure 1: RC Circuit

i. Transform the circuit elements from time domain to the Laplace domain.

[08 marks]

ii. Hence, draw the Laplace domain equivalent circuit for the Figure 1.

[02 marks]

iii. Find the output voltage (V_0) , across the capacitor.

[10 marks]

A periodic triangular signal is shown in Figure 2. Find its complex Fourier series.
 [14 Marks]

Figure 2: Periodic Triangular wave

b) The input and the impulse response of discrete-time LTI system are given by, $x[n] = (0.9)^n u[n]$ and $h[n] = (0.2)^n u[n]$ respectively. Find the output y[n] of the system. [06 marks]

Hint*: You may use the Geometric series identity $\sum_{k=0}^{n} \left(\frac{a}{b}\right)^{k} = \frac{1 - \left(\frac{a}{b}\right)^{n-1}}{1 - \left(\frac{a}{b}\right)}$

- 3. Figure 3 shows a passive RC circuit with a current source $(I_s = 10e^{-2t}u(t)A)$.
 - a. Transform the circuit elements from time domain to the frequency domain (Ω -domain). [04 marks]
 - b. Find the current through the capacitor using the inverse Fourier transform.

[10 marks]

Figure 3: RC Circuit

c. Find the Fourier Transform of the 'two-sided' exponential pulse shown in Figure 4 and sketch its spectrum. [06 marks]

Figure 4: 'Two-sided' exponential Pulse

4.

- a. The continuous-time signal $x(t) = 3\cos(400\pi t)$ is sampled with 600 Hz. Find the digital angular frequency of the corresponding discrete-time signal x[n].

 [03 marks]
- b. Consider the continuous-time signal $x(t) = 4\cos(100\pi t) + 3\cos^2(200\pi t)$. If x(t) is sampled with a sampling frequency fs Hz, express the condition that should be satisfied by the sampling frequency fs in order to ensure the perfect recovery of x(t) from the corresponding discrete-time signal. [03 marks]

- c. Consider the continuous-time signal $x(t) = 2\cos(60\pi t)$.
- i. Using the continuous-time Fourier transform pair $cos\Omega_0 t \leftrightarrow \pi[(\Omega \Omega_0) + (\Omega + \Omega_0)]$, Where Ω_0 is a constant angular frequency in rad/s, sketch the spectrum $X(\Omega)$.
- ii. The continuous-time signal x(t) is sampled with 50 Hz in order to generate the discrete-time signal x[n]. Sketch the spectrum $X(\omega)$ of x[n] in the range $3\pi \le \omega \le 3\pi$. [08 marks]
- iii. Assume that x[n] is applied to an ideal reconstruction filter of which the output is $\hat{x}(t)$. What is the frequency (in Hz) of the continuous-time signal $\hat{x}(t)$?

5.

a. Find the z-transform of the following signals with the region of convergence. (i). $x[n] = a^n u[n]$

(ii).
$$x[n] = -a^n u[-n-1]$$
 [05 marks]

Where a is a real-valued constant and u[n] is the discrete-time unit-step function.

b. Using the answer obtained for Q5-(a) and the relevant properties of the z-transform or any other means, find the z-transform of the signal with the region of convergence.

[05 marks]

$$W[n] = (n-2)a^{n-2}u[n-2]$$

c. Consider an LTI System having the transfer function

$$H(z) = \frac{1}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{4}z^{-1})} ; |z| > \frac{1}{2}$$

Using the answer obtained for Q5-(a) and the relevant properties of the z-transform, find the output signal y[n] of the system, if the input signal is u[n]. [10 marks]

6.

i. The coefficients of an N th order (length N+I), where N is even) FIR filter H(z) is denoted as h[n], $-N/2 \le n \le N/2$. Express the condition that should be satisfied by the coefficients h[n] of the FIR filter in order to have a zero-phase response.

[05marks]

ii. The ideal frequency response of a zero-phase bandpass filter H(z) is specified as

$$H_l(e^{j\omega}) = \left\{ egin{array}{ll} 1 \ 0, & for \ \omega_l \leq |\omega| \leq \omega_u \ otherwise, \end{array}
ight.$$

where $-\pi \le \omega \le \pi$, and ω_l and ω_u ($0 < \omega_l < \omega_u < \pi$) are the lower and upper cutoff frequencies of the bandpass filter, respectively. Derive a closed-form expression for the infinite-extent ideal impulse response $h_l[n]$. [15 marks]

