THE OPEN UNIVERSITY OF SRI LANKA Faculty of Engineering Technology Department of Mathematics & Philosophy of Engineering

Bachelor of Technology Honors in Engineering / Bachelor of Software Engineering Honors

Final Examination (2020/2021) MHZ5355: Discrete Mathematics

Date: 30th January 2022 (Sunday)

Time: 14:00 - 17:00

Instruction:

- Answer only five questions.
- Please answer a total of five questions choosing at least one from each single section.
- All symbols are in standard notation and state any assumption that you made.

SECTION - A

Q1.

i. Prove the following statements using Mathematical induction.

	a) $7^n - 2^n$ is divisible by 5 for all $n \ge 1$;	[15%]
	b) $\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$ for all $n \ge 1$.	[15%]
ii.	Let a , b , and c be any integer numbers. Prove that, a) if $a b$ and $a c$, then $a (3b-7c)$,	[10%]
	b) if $a b, a > 0$, and $b > 0$ then $a \le b$,	[10%]
	c) if $a b$ and $b c$, then $a c$.	[10%]
(;;		

iii.

- a) Find the gcd(285,741), and find the integers x, y such that gcd(285,741) = 285x + 741y by using the Euclidean Algorithm. [15%]
- b) Determine all integer solutions of the following Diophantine equation:

$$285x_0 + 741y_0 = 855. [10\%]$$

c) Find the least common multiple (lcm) of 285 and 741. [15%]

Q2.

i. Let gcd(a,b) = 1. Show that gcd(2a+b,a+2b) = 1 or 3

[25%]

- ii. Let a, b, c and d be integers. Let n be a positive integer. Show that
 - a) if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv (b + d) \pmod{n}$ and $ac \equiv bd \pmod{n}$. [20%]
 - b) if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for any $k \in \mathbb{Z}^+$. [15%]
- iii. Solve the following system of congruence:

[40%]

 $13x \equiv 4 \pmod{7}$

 $x \equiv 7 \pmod{12}$

 $x \equiv 4 \pmod{17}$.

SECTION - B

Q3.

- i. Determine whether the operations "*", $\mathbb{N} \times \mathbb{N} \to \mathbb{R}$ defined below are binary operation or not. Prove your answer if "*" is a binary operation, explain the reason if "*" not a binary operation. [30%]
 - a) $x * y = \frac{x}{y}$; $x, y \in \mathbb{N}$,
 - b) x * y = |x y|; $x, y \in \mathbb{N}$,
 - c) x * y = x + y xy; $x, y \in \mathbb{N}$.
- ii. Let A be any nonempty set with the operation " * " defined by $a*b=a^2+b^2$.
 - a) Is this operation associative?
 - b) Is this operation commutative?

Justify your answer.

[25%]

iii. Define an abelian group (G, *) in usual notation.

Let $G = \{(a, b): a, b \in \mathbb{R}; a \neq 0\} = \mathbb{R} \setminus \{0\} \times \mathbb{R}$. Let a binary operation " * " defined by (a, b) * (c, d) = (ac, b + d) for all $(a, b), (c, d) \in G$.

- a) Show that (G,*) is a group.
- b) Is the group (G,*) Abelian? Justify your answer.

Q4.

- i. Define a semi-group (G, #) in usual notation. Let operations "#": $\mathbb{R} \times \mathbb{R} \to \mathbb{R}$, defined as follows.
 - a) "a # b = ab + 5 for all $a, b \in \mathbb{R}$;
 - b) " $c \# d = \frac{2}{3} cd$ " for all $c, d \in \mathbb{R}$;
 - c) "x # y = 2(x + y) + 3" for all $x, y \in \mathbb{R}$.

Verify that where $(\mathbb{R}, \#)$ a semi-group or not for each of the above cases. [45%]

- ii. Let $G = \{1, -1\}$. Show that (G, *) is a group, where "*" is the ordinary multiplication. [25%]
- iii. Define a homomorphism for group in usual notation. [30%] Let $T = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{Z} \right\}$ be a group under matrix addition.

Let $f: T \to \mathbb{Z}$ be defined by $f \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + d$.

Prove that f is a homomorphism of T on to \mathbb{Z} , where \mathbb{Z} is a group under addition.

SECTION-C

Q5.

i. Determine which of the following are simple, by drawing each of them.

a)
$$G_1 = \{V_1, E_1\}$$
 where $V_1 = \{1, 2, 3, 4, 5, 6\}$ and $E_1 = \{\{x, y\}, 3x + y \text{ is even and } x < y\}$ [10%]

b)
$$G_2 = \{V_2, E_2\}$$
 where $V_2 = \{1, 2, 3, 4, 5, 6, 7\}$ and $E_2 = \{\{i, j\}: |i - j| \le 3; \text{ and } i \le j\}$ [10%]

c)
$$G_3 = \{V_3, E_3\}$$
 where $V_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $E_3 = \{\{m, n\}: m \times n \text{ is a multiple of } 10 \text{ and } m < n\}$ [10%]

ii. Let G be a graph of 10 vertices and 15 edges such that every vertex is of degree 2 or 4. How many vertices of G degree? Construct one such graph G.

[25%]

iii. G is the graph whose adjacency matrix M is given by

$$M = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}.$$

a) Without drawing a graph of G, explain whether G is connected or not.

[15%]

- b) If $V(G) = \{p, q, r, s\}$ then find the number of paths of length four joining vertices r and s.
- c) Draw the graph of a adjacency matrix M.

[05%]

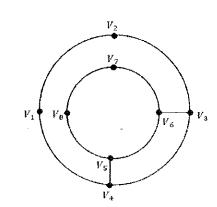
iv. Find the number of vertices n such that the complete graph has at least 1200 edges. [15%]

Q6.

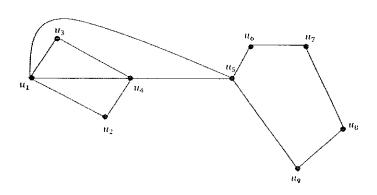
i. Determine whether following graph are Eulerian or not. Which of them are Hamiltonian? Justify your answers.

[30%]

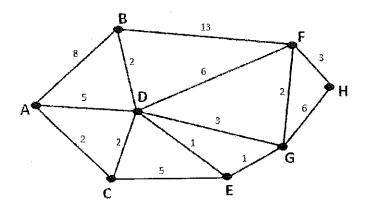
a)



b)



ii. Use Dijkstra's algorithm to find the shortest route between node A and every other node in the following network. [60%]



iii. Draw a tree with 16 vertices at least 8 vertices have degree one.

[10%]

SECTION - D

Q7.

i. Iterate the Eco-system growth model relationship $t_{n+1} = \lambda t_n - \lambda t_n^2$, where $\lambda = 2.3$ and $t_0 = 0.4$ (at least 7 iteration steps are required) and draw the graph for the relation. Hence deduce t_n as $n \to \infty$.

(Up to 4 decimal places probably)

[20%]

- ii. Consider the iterations given by $Z_{n+1} = Z_n^2$ and suppose that $Z_0 = \frac{1}{\sqrt{2}}(1+i)$.
 - a) Find Z_1 , Z_2 , Z_3 and Z_4 .
 - b) Plot them in a same Argon diagram
 - c) Discuss the behavior of Z_n as $n \to \infty$.

[20%]

iii. Suppose a system with two unknowns x and y, is modeled in the form of a system of differential equations

$$\frac{dx}{dt} = 2x - 6y$$
$$\frac{dy}{dt} = x + 7y$$

with initial conditions x = 1 and y = 0 when t = 0. Find two iterations for the unknowns x and y at t.

[60%]

Q8.

- i. Let $L = \{001, 10, 111\}$ and $M = \{\varepsilon, 01, 001\}$ be languages. Find the concatenations LM and ML.
- ii. Show that the string a b * c + d is a sentence generated by the grammar G, where $G = \{\{S, E, T, F\}, \{+, *, -, /, a, b, c, d\}, P, S\}$ and starting symbol S and production P.

P is the set of rules defined as follows:

[25%]

$$S \rightarrow E$$
, $T \rightarrow F$
 $E \rightarrow E + T$, $F \rightarrow (E)$
 $E \rightarrow E - T$, $F \rightarrow a$,
 $E \rightarrow T$, $F \rightarrow b$,
 $T \rightarrow T * F$ $F \rightarrow c$,
 $T \rightarrow T/F$ $F \rightarrow d$

iii. Let $M = \{S, I, \delta, S_0, F\}$ be a Non-Deterministic Finite Automata (NDFA). Where S is a finite set of state, I is a finite set of input symbols, δ is the transition function, S_0 is the initial state, and F is the set of final states.

Transition Table for the above Non-Deterministic Finite Automata as follows:

	Inputs	
States	a	b
0	{0, 1}	{0, 4}
1	{1}	{2}
2	{2, 3}	-
. 3	{3}	{3}
4	{5}	-
5	{5}	{4, 5}

The initial state is 0, and the set of final states is $\{3, 5\}$.

a) Depict the finite automaton's transition graph.

[15%]

b) Show that the string *ababab* is accepted by the Non-deterministic Finite Automaton by applying the transition function. [40%]