The Open University of Sri Lanka Faculty of Engineering Technology Department of Electrical & Computer Engineering

Study Programme

: Bachelor of Software Engineering Honors

Name of the Examination

: Final Examination

Course Code and Title

: EEZ3361/ECZ3161 – Mathematics for Computing

Academic Year

: 2019/2020

Date

: 26th July 2020

Time

: 1330-1630hrs

Duration

: 3 hours

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Eight (8) questions in Five (5) pages.
- 3. Answer any five out of eight questions. All question carry equal marks.
- 4. Show all steps clearly.
- 5. Answer for each question should commence from a new page.
- 6. This is a Closed Book Test (CBT).
- 7. Programmable calculators are not allowed.
- 8. Do not use red color pen.

a) Let
$$A$$
, B , C and D be Boolean variables. Prove the following identities

[6]

i.
$$AB + \overline{A}C + BC = AB + \overline{A}C$$

ii.
$$(\overline{AB})(\overline{A} + B)(\overline{B} + B) = \overline{A}$$

iii.
$$\overline{AB} + B(\overline{C} + \overline{CD}) = \overline{AB} + \overline{AB} + \overline{ACD} + BCD$$

[4]

i.
$$(\overline{a} + \overline{b})(\overline{a} + b) = a$$

ii.
$$\overline{x + \overline{y} + z} = \overline{x}y\overline{z}$$

c) Consider the following truth table

[10]

ith table.					
	A	В	С	D	Result
	0	0	0	0	1
i	0	0	0	1	1
į	0	0	1	0	1
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	0
	1	0	0	0	0
	1	0	0	1	0
	1	0	1	0	1
	1	0	1	1	1
	1	1	0	0	0
	1	1	0	1	0
	1	1	1	0	1
	1	1	1	1	1
_					

- i. Setup the Karnaugh map for the above truth table.
- ii. Then find the solution and simplify using the Karnaugh map.

a) If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$$
, then show that $A^2 + 2I = A$; where I is the identity matrix of order 2.

b)

Let
$$A = \begin{bmatrix} -1 & 1 & -1 \\ 3 & -3 & 3 \\ 5 & -5 & 5 \end{bmatrix}$$
. Show that $A^2 = A$. [8]

Hence, deduce that $(I - A)^2 = (I - A)$, where I the identity matrix of order 3.

c)

Let
$$A = \begin{bmatrix} -5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$
.

Show that $A^2 = I$, where I is the identity matrix of order 3. [6]

Q3 Let
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$
.

- a) Find AA^T [6]
- b) Using Gaussian elimination method, find the inverse of the matrix A. [14]

Q4

a) Given that
$$\sin \theta = \frac{3}{8}$$
 and $0 < \theta < \frac{\pi}{2}$, and $\sin \alpha = \frac{5}{13}$, $\frac{\pi}{2} < \theta < \pi$. Find [12]

i. $\sin(\theta - \alpha)$ ii. $\cos(\theta + \alpha)$ iii. $\tan(\theta - \alpha)$

b) Sketch the graph of
$$y = cos^2 x$$
, where $-2\pi \le x \le 2\pi$ [8]

Q5

a) Write a formula for
$$Sin(A + B)$$

i. Using the above formula, prove that $Sin 3A = 3SinA - 4Sin^3A$. [6]

- ii. Hence, find the value of Sin 1350
- b) Prove the following trigonometric identities

[9]

i.
$$(1 - Cos^2x)(1 + Cos^2x) = 2Sin^2x - Sin^4x$$

ii.
$$\frac{2Cos^2x}{2Cotx - Sin2x} = Tanx$$

iii.
$$Sin75^{\circ} + Sin15^{\circ} = \sqrt{\frac{3}{2}}$$

[5]

c) Find the general solution of the following equation
$$2Sin^2x - 3Sin x + 1 = 0 \text{ in the range } 0^0 \le x \le 360^0$$

Q6

[6]

i.
$$\lim_{x \to 0} \frac{\tan x - x}{\sin x}$$

ii.
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 2x - 3}$$

iii.
$$\lim_{x \to 1} \frac{1 - \cos x}{x^2}$$

ГЯ

b) Differentiate the following functions with respect to x. i.
$$y = e^{-2x} sin2x$$

ii.
$$y = (\frac{x \sin x}{1 + \cos x})$$

[8]

c) Find the equation of the tangent to the curve y = sin(3x) + 1 at the point where $x = \frac{\pi}{3}$

[6]

Q7

a) Using the first principles, find the first derivative of the following.

. [12]

i.
$$y = x^2 + 3x + 2$$

ii.
$$y = \frac{1}{1+x}$$

iii.
$$y = sinx + 1$$

iv.
$$y = cosx$$

b) Taking $x_0 = 1$ as an initial approximation for the root of Newton-Raphson formula, obtain two further approximations to the positive root of $x^2 - 3 = 0$, giving your answers to 3 decimal places.

[8]

Q8

a) Find the following indefinite integrals.

[6]

i.
$$\int (\sin 2x - \cos 3x) dx$$

ii.
$$\int \sin{(1-x)}dx$$

b) Evaluate the following definite integrals.

[8]

$$i \qquad \int_0^2 \frac{1}{x^2 + 4} \, dx$$

ii.
$$\int_0^3 \frac{1}{\sqrt{9-x^2}} dx$$

c)

[6]

- i. Sketch the curves of the graph of $y = x^2$ and the straight line y = x in the same figure.
- ii. Find the coordinates of the points of intersection of the curves.
- iii. Hence, find the area bounded by the two curves $y = x^2$ and y = x.