The Open University of Sri Lanka Faculty of Engineering Technology

133

Department of Electrical & Computer Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: EEX3351 Electronics I

Academic Year

: 2020/2021

Date

: 23rd January 2022

Time

: 0930-1230hrs

Duration

: 3 hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Five (5) questions in Four (4) pages.
- 3. Answer All the questions.
- 4. Answer for each question should commence from a new page.
- 5. Relevant charts / codes are provided.
- 6. This is a Closed Book Test (CBT).
- 7. Answers should be in clear hand writing.
- 8. Do not use red colour pens.

- Q1. (a) Considering the behavior of the P-N junction in reverse and forward biased Modes, derive the characteristic curve of a practical diode. (4 Marks)
 - (b) Consider the current-limiting series regulator circuit in Figure-Q1 where Z is a Zenner diode with a breakdown voltage of 6V and T1 and T2 are identical Si transistors with a base-emitter voltage drops of 0.7V in each. $R_L=20\Omega$. Further assume the operational amplifier to be ideal and the minimum current through the Zenner to maintain the breakdown is 20mA. The regulator is fed with an input supply V_{in} varying in the range 20V-30V.

Figure-Q1

i. Calculate a suitable value for R₃ to maintain the Zenner at breakdown.

(4 marks)

- ii. Explain the operation of the circuit when the input voltage increases from 20V to 30V. (4 marks)
- iii. Calculate the regulated output voltage V_o.

(4 marks)

iv. Calculate the value of R_{SC} to limit the maximum load current to 0.5A.

(4 marks)

Q2. Figure-Q2 shows a transistor amplifier circuit arrangement. Here T is a Silicone transistor having $\beta = 80$.

- Figure-Q2
- (a) What is the bias configuration of the amplifier? (1 Mark)
- (b) Find expressions for the collector current and the voltage across collector-emitter terminals (V_{CE}) in terms of R. (4 Mark)
- (c) Draw the DC load line for the above amplifier and mark the Q point. (4 Mark)
- (d) Hence, find a suitable value for resistor R to produce a maximum peak-to-peak output swing without distortion. (6 Mark)
- (e) What is the maximum possible distortion-free peak-to-peak value of the supply voltage v_s when R is set to the value calculated in (d)? (5 Mark)

Q3. A small signal circuit is shown in Figure-Q3. Let, $V_{CC}=18V$, $R_1=100k\Omega$, $R_2=56k\Omega$, $R_E=1k\Omega$, $r_s=1k\Omega$ and $R_L=50\Omega$. The transistor has the following h parameter values. $h_{fc}=-101$, $h_{rc}=1$ and $h_{ic}=1.4k\Omega$. h_{oc} is negligibly small.

Figure-Q3

- (a) Draw the AC h parameter equivalent circuit for the amplifier in Figure-Q3.(5 Marks)
- (b) Using above parameter values, find the following.

i.	Current gain	(3 marks)
ii.	Voltage gain	(3 marks)
iii.	Power gain	(3 marks)
iv.	Input impedance	(3 marks)
v.	Output impedance	(3 marks)

- (a) List and explain three characteristics of an ideal operational amplifier. Discuss the deviations in practical operational amplifiers. (3x2 Marks)
- (b) An inverting Schmitt trigger circuit is shown in Figure-Q4.

Figure-Q4

Assume that both Zenner diodes are identical and the Zenner voltage and the forward barrier voltage are 6.3V and 0.7V respectively.

- i) Draw the transfer characteristics. (4Marks)
- ii) Explain the hysteresis observed in transfer characteristics. (4Marks)
- iii) Draw the output waveform for an input of $v_{in} = 2 \sin(10\pi t)$. (6Marks)

Q5.

- (a) Perform the calculation 22-31 in 8 bit 2's complement arithmetic. (4 Marks)
- (b) Carry look-ahead adder is a concept used in modern microprocessor ALUs to generate all carry bits required in adding two multi-bit numbers using a combinational circuit. This eliminates the need for long waiting in order to receive the rippled carry bits. Let $A = a_4 a_3 a_2 a_1$ and $B = b_4 b_3 b_2 b_1$ are two 4 bit numbers for addition. Consider the addition of a single bit position with a full adder.
 - i. Show that the Boolean expression for the carry at the n-th bit $(n = \{1,2,3,4\})$ can be expressed in the form $C_n = G_n + C_{n-1}P_n$ where G_n and P_n are Boolean functions of a_n and b_n .

 [You should clearly show the steps including the truth table and minimization]

(6Marks)

- ii. Hence show that C_n can be expressed in terms of c_1 , a_n and b_n only $(n = \{1,2,3,4\})$. (4Marks)
- iii. Implement the complete carry generation combinational logic circuit using only NOR gates. (6Marks)