

# The Open University of Sri Lanka Faculty of Engineering Technology

Department of Electrical & Computer Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: EEX3410 Introduction to Electrical Engineering

Academic Year

: 2020/21

Date

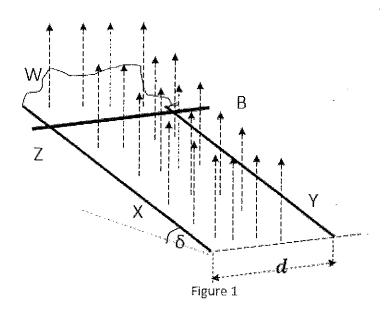
: 22/02/2022

Time

: 0930 - 1230 hrs

Duration

: 3 hours


# **General Instructions**

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Six (6) questions in Six (6) pages.
- 3. Answer any Five (5) questions only, including all from Part A and Two (2) from Part B.
- 4. Answer for each question should commence from a new page.
- 5. Relevant charts / codes / values are provided.
- 6. This is a Closed Book Examination.
- 7. Answers should be in clear handwriting.
- 8. Clearly indicate all formula and calculations for full marks.
- 9. Do not use red colour pen.

### PART A - Answer all questions

# Q1 [20 marks]

Two long parallel conductors, X and Y, having distance d between them are inclined at the angle  $\delta$  to the horizontal. The conductors are connected by a conducting wire W at the top. This whole setup is inside a vertically upward magnetic field. Flux density of the field is B (Figure 1). An iron rod (Z) with resistance R and mass m is initially held on the parallel conductors at the top. When the rod is just released it starts to move downward with an acceleration and after a while it continues to move with a constant velocity u. The resistance of the conductors X, Y and wire W are negligible.



a) What is the force influencing to move the rod with acceleration just after its release? [2] b) Briefly explain why the rod attains a constant speed. [4] Derive expression and determine the direction of i. induced emf in the rod [3] ii. current through the rod [2] magnetic force acting on the rod [3] d) If  $\delta = 10^{\circ}$ ; m = 50 g; d = 25 cm; R = 5  $\Omega$ , calculate the required magnetic flux density B to move the rod at the constant speed u of 10 m/s. [consider  $q = 9.8 \text{ m/s}^2$ ] [4] e) Now (with the rod moving at the constant velocity u), what would be the impact to the velocity, if i. magnetic flux density is doubled [1] ii. direction of the magnetic field is reversed [1]

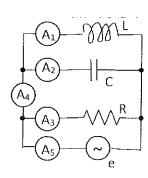
# Q2 [40 marks]

e \_\_\_\_\_\_

Figure 2a

In the Circuit of Figure 2a, it is given that L = 150 mH, C = 2.5  $\mu$ F, R<sub>L</sub> = 400  $\Omega$ , and R<sub>C</sub> = 200  $\Omega$ . The source delivers a sinusoidal output.

The current and voltage of the Capacitor, as measured with an ideal multimeter at AC setting, read 60 mA and 12 V respectively.


- i. Calculate the frequency, and currents and voltages of the other 3 passive components. *Consider the current through the Capacitor as reference.* [12]
- ii. Calculate the supply voltage, and express it in the time domain (in the form  $e(t) = E_m \sin(\omega t \pm \phi)$ ).
- iii. Calculate the power dissipated from the circuit, and its power factor. [4]
- iv. Draw a phasor diagram for the circuit, using the above values, taking the current through the Capacitor as reference. [12]

Draw the phasor diagram (approximately) to scale on a sperate page. They should match the values from i. Draw the reference horizontal to right.

b)i. Describe the main characteristic of a circuit at resonance.

[3]

You are provided an inductor L = 100 mH, a capacitor C =  $10 \,\mu\text{F}$ , a resistor R =  $200 \,\Omega$ , a source providing frequency  $e(t) = 34 \,\sin{(\omega t)} \,V$ , and a set of ideal AC ammeters (A<sub>1</sub>.. A<sub>5</sub>) connected as shown in Figure 2b.



When the reading of ammeter A<sub>1</sub> is 240 mA, find

Figure 2b

- ii. ω iii. A<sub>2</sub> reading iv. A<sub>3</sub> reading v. A<sub>4</sub> reading vi. A<sub>5</sub> reading
- vii. Draw to scale the phasor diagram for the circuit, using the source voltage as reference. [7]

# Q3 [10 marks]

A transistor amplifier circuit is shown in Figure 3a. The output characteristics of the transistor and the DC load line for the amplifier are shown in Figure 3b.

Q is the operating point (biasing point of the amplifier).

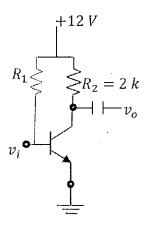



Figure 3a

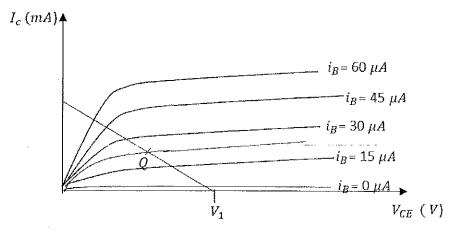



Figure 3b

i. Find the value of  $V_1$ .

[3]

- ii. When  $v_i=0$ , find
  - a. the base current

[2]

b. the collector-emitter voltage

[2]

c. the collector current

[3]

# Part B - Answer any two Questions

# Q4 [15 marks]

- a) The earth has a net electric charge that causes a field at points near its surface of about 150 N/C and directed in toward the centre of the earth.
  - i. What magnitude and sign of charge would a 60 kg human have to acquire to overcome his or her weight by the force exerted (generated) by the earth's electric field?
- ii. What would be the force of repulsion between two people each with the charge calculated in part i. and separated by a distance of 100 m? [3]

Consider 
$$g = 9.8 \text{ m/s}^2$$
;  $k = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$ 

b) The capacitors in Fig. 4 are initially uncharged and are connected, as in the diagram, with switch S open. The capacitors are of values  $C_1$  = 3  $\mu F$  and  $C_2$  = 6  $\mu F$ . A potential difference of  $V_{ab}$  = 210 V is applied between a and b.

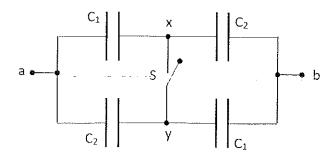



Figure 4

- i. What is the potential difference  $V_{xy}$ ? [3]
- ii. What is the potential difference across each capacitor after switch S is closed? [3]
- iii. How much charge flowed through the switch when it was closed? [3]

# Q5 [15 marks]

A moving coil type indicating instrument requires 100  $\mu$ A DC current for the full-scale deflection. The resistance of the instrument is 1000  $\Omega$ .

- i. If the instrument is required to be used as an ammeter in the following measuring ranges, calculate the shunt resistances you need for each case.
  - a. 1 mA DC full scale deviation

[3]

b. 50 mA DC full scale deviation

[3]

- ii. If the instrument is required to be used as a voltmeter of 50 V DC (full scale) range, calculate the series resistance you need to connect. [3]
- iii. If the voltmeter prepared in 'ii' is used to measure the voltage between the points A and B in the circuit shown in Figure 5, calculate the voltage reading. Assume that the voltage source is ideal.

  [5]

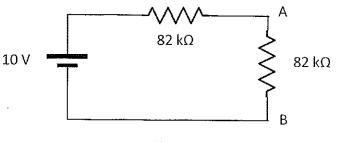
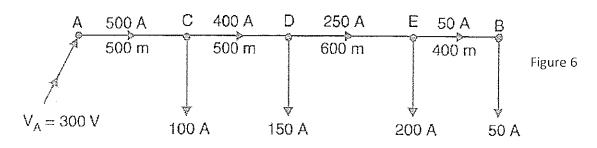



Figure 5

iv. Calculate the percentage error of the meter reading you have calculated in 'iii'.

[1]

# Q6 [15 marks]


- a) While giving three reasons briefly explain why the electrical energy is superior to all other forms of energy.
- b) What are the differences between conventional and non-conventional energy sources?

  Briefly explain **two types** of conventional energy sources which are more usable in the electrical power industry including their energy conversion process.

  [4]
- c) Is it convenient to increase the transmission voltage as high as possible? Justify your answer.

[2]

d) A 2-wire DC distributor cable AB is 2 km long and supplies loads of 100 A, 150 A, 200 A and 50 A situated 500 m, 1000 m, 1600 m and 2000 m from the feeding point A as in Figure 6. Each conductor has a resistance of 0.01  $\Omega$  per 1000 m. Calculate the power distribution at each load point (B, C, D, E) if a voltage of 300 V is maintained at point A.

