THE OPEN UNIVERSITY OF SRI LANKA Faculty of Engineering Technology Department of Mathematics & Philosophy of Engineering

Time: 1400 hrs. - 1700 hrs.

Bachelor of Technology Honors in Engineering

Date: 19th January 2022 (Wednesday)

Final Examination (2020/2021) MHZ3551: Engineering Mathematics I

Insti	ruc	ctions:		
•	•	Answer five (05) questions only.		
•	•	Number of pages in the paper is three (03).		
	,	All the symbols are in standard notation unless they are defined.		
Q1. a	a).	Let p and q be any two propositions. By using laws in propositional logic, show that the proposition, $(p \Rightarrow q) \Rightarrow \neg p$ is equivalent to $\neg (p \land q)$.	(25%)	
1	b)	Let φ be the formula defined as $\forall x \forall y \exists z (x > y \Rightarrow x > z > y)$ for $x, y, z \in \mathbb{R}$. Then prove that $\neg \varphi$ is equivalent to $\exists x \exists y \forall z (x > y \land (z \ge x \lor y \ge z))$.	(25%)	
,	c)	Let $a \in \mathbb{Z}$. Use the proof by case to show that if a is not divisible by 3, then $a^2 + 2$ is divisible by 3.	(25%)	
,	d)	Use the method of indirect proof, to prove that if n is an integer and $3n + 5$ is odd then n is even.	(25%)	
Q2	a).	Let A, B and C be any three subsets of the universal set U. Use the laws of sets to prove that $(A - B) - (B - C) = A - B$.	(20%)	
	b)	Let the relation R in $\mathbb{N} \times \mathbb{N}$ is defined as $(a,b)R(c,d)$ if and only if $ad(b+c) = bc(a+d)$. Show that R is an equivalence relation.	(20%)	
	c)	If $f: x \to x^2 + 4$, where $x \in (-\infty, 0)$, then show that f is a one-to-one function and find the inverse function of f .	(30%)	
	d)	Let $f: x \to 2x^2$ for $x \in (0,2)$ and $g: x \to 2x - 1$ for $x \in (0,1)$. Then find R_g , R_f and the function $g \circ f(x)$.	(30%)	

Q3 a) Let
$$A = \begin{bmatrix} 4a+1 & 4a \\ -4a & 1-4a \end{bmatrix}$$
.

i) Find the characteristic equation of A.

(15%)

(15%)

- ii) Let $n \in \mathbb{Z}^+$ and f(x) is a polynomial of degree n-2. If $x^n = (x-1)^2 f(x) + \lambda x + \mu$ then find the values of λ and μ in terms of n.
- iii) Deduce that $A^n = nA + (1 n)I_2$. Hence prove that $A^n = \begin{bmatrix} 4an + 1 & 4an \\ -4an & 1 4an \end{bmatrix}$, where I_2 is an identity matrix of order 2. (35%)
- Apply elementary row (column) operations to find the factors of $\begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$. (35%)
- Q4 a) Let λ be a real number such that $\lambda > 1$ and $(a_n)_{n \in \mathbb{Z}^+}$ be a sequence of

positive numbers such that $a_1 > \sqrt{\lambda}$ and $a_{n+1} = \frac{\lambda(1+a_n)}{\lambda+a_n}$.

- i) Express $(a_{n+1})^2 5$ in terms of a_n and use the principle of mathematical induction to prove that $a_n > \sqrt{5}$ for each n in \mathbb{Z}^+ . (20%)
- ii) Deduce that $(a_n)_{n\in\mathbb{Z}^+}$ is a strictly decreasing sequence and find the $\lim_{n\to\infty}a_n$. (15%)
- Use D' Alembert's ratio test to show that $\sum_{n=1}^{\infty} \frac{5^n + 2020}{3^n}$ is divergent. (20%)
- c) Let f be a function defined as

$$f(x,y) = \begin{cases} \frac{x^2y^2}{8x^3 + y^3}, & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$
 (25%)

Find $\lim_{\substack{(x,y)\to(0,0)\\y=mx}} f(x,y)$ and $\lim_{\substack{(x,y)\to(0,0)\\y=-2xe^x}} f(x,y)$, where $m\in\mathbb{R}$. What can you say

about the $\lim_{(x,y)\to(0,0)} f(x,y)$?

Show that
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$
 if $f(x, y) = e^x \cos y$. (20%)

Q5 a) Let f be a function such that $f(x) = (x - 4a)(x - 7a)e^{-\frac{x}{2a}}$, where $a \in \mathbb{R}^+$.

Prove that
$$\frac{df(x)}{dx} = -\frac{1}{2a}(x - 10a)(x - 5a)e^{-\frac{x}{2a}}$$
 (15%)

- ii) Verify Roller's theorem. (25%)
- b) Let g be a function such that $g(x) = |x| \sin x$. Show that g is continuous at x = 0 and g is differentiable at x = 0. (30%)
- c) Let h be a function such that h(x) = |x| cos x. Show that h is continuous at x = 0 and h is not differentiable at x = 0. (30%)

(15%)

Q6 a) Show that the differential equation

$$(6x^2\cos y - 16y\cos x)dy + (12x\sin y + 8y^2\sin x)dx = 7x^6$$
 (40%)

is exact and find the general solution of the equation.

b) Use the substitution y = vx to solve the following differential equation

$$10x\cos\left(\frac{9y}{x}\right)\frac{dy}{dx} = 10y\cos\left(\frac{9y}{x}\right) + 19x. \tag{30\%}$$

c) Find the general solution of the following differential equation

$$\cos x \frac{dy}{dx} + y \sin x = 2021x^{2020} \cos^2 x. \tag{30\%}$$

- Q7. a). i) Prove that $\frac{1}{D+\alpha}f(x) = e^{-\alpha x} \frac{1}{D} e^{\alpha x} f(x)$. (20%)
 - ii) Use the formula in part i) to find the particular integral of the differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} 2y = 5sin3x. \tag{30\%}$
 - iii) Hence find the general solution of the differential equation in ii). (15%)
 - b) Let $y_P = ke^{2x}$ be a particular integral of the differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = 30e^{2x}.$$
 Then

i) find the value of
$$k$$
. (20%)

- ii) find the general solution of the above differential equation.
- Q8 A particle of mass m is projected with speed u along the greatest slope line of a plane inclined θ to the horizon. When the speed of the particle is v, the resistance on the particle is mkv^2 , where k > 0.
 - a) Prove that the maximum distance travelled up by the particle is

$$\frac{1}{2k}\ln\left(1+\frac{ku^2}{g\sin(\theta)}\right). \tag{30\%}$$

b) If the speed of the particle is V when the particle returns to the point of

projection, prove that
$$\frac{1}{V^2} = \frac{k}{g \sin(\theta)} + \frac{1}{u^2}$$
. (50%)

c) Deduce that $V^2 < \frac{g}{k} \sin \theta$ and u > V. (20%)

End.

-Copyright reserved -

į •