The Open University of Sri Lanka Faculty of Engineering Technology Department of Mechanical Engineering

Study Programme : Bachelor of Technology Honours in Engineering

Name of the Examination: Final Examination

Course Code and Title : DMX4543 Control Systems Engineering

Academic Year : 2020/21

Date : 10th February 2022 Time : 09:30 – 12:30 hrs.

Duration : 3 hours

General Instructions

1. Read all instructions carefully before answering the questions.

- 2. This question paper consists of eight (8) questions in five (5) pages.
- 3. Write the answers for the Section A and Section B in separate answer books.
- 4. Answer Q1, which is compulsory and FOUR other questions, selecting at least ONE from SECTION A and TWO (2) from SECTION B. Answer for each question should commence from a new page.
 - 5. Relevant charts/codes are provided.
 - 6. This is a Closed Book Test (CBT).
 - 7. Answers should be in clear handwriting and do not use Red colour pen.
 - 8. Clearly state your assumptions, if any.

SECTION A

Q1 An automatic depth control of a Submarine in the deep sea is shown in Figure Q1. Suppose the submarine's Captain needs to hover (float) at a desired depth and sets the desired depth as a voltage from a calibrated potentiometer;

Figure Q1

- (a) Explain briefly, how the system output can be measured and the type of transducer to be used. [03]
- (b) What is the Actuator of the system? [02]
- (c) Propose and explain the operation of this control system. [06]
- (d) Draw a complete block diagram, identifying each block with its function. [04]
- (e) Let $G_i(s)$'s and $H_i(s)$'s are the transfer functions (where $i = 1, 2, 3, \ldots$) for the forward and feedback path blocks in (d), respectively. Find the closed loop transfer function of the system.

[05]

Q2 A feed forward transfer function of a unity feedback system is given by

$$\frac{5000}{s(s+75)}$$

- (a) For a unit step input, find the [10]
 - i) Expected percent overshoot ii) Settling time of the system
- (b) If u(t) is a unit step function, find the steady state error for an input of [06]
 - i) 5u(t) ii) $5t \times u(t)$
- (c) Explain briefly, how the overshoot and settling time are influenced on the stability of a control system. [04]

Q3 Figure Q3 shows the block diagram of a feedback control system.

Figure Q3

(a) Draw the signal flow graph (SFG) for the given system.

[12]

(b) Apply the SFG gain formula to find the transfer functions.

[04]

i)
$$\frac{C(s)}{R(s)}\Big|_{N=0}$$

ii)
$$\frac{C(s)}{N(s)}\Big|_{R=0}$$

(c) Express the output C(s) in terms of R(s) and N(s) when both inputs are applied simultaneously. [04]

04

(a) A feedback control system is shown in Figure Q4.

Figure Q4

i) Explain briefly, what is meant by sensitivity of a system.

[02]

ii) Determine the sensitivity of the system to variations in each of the parameters K_1 and K_2 separately. [04]

(b) An open loop transfer function of a unity feedback system is given by

$$G(s) = \frac{(s+2)}{0.25s(s+1)(s+4)}$$

What is the *Type* of this system?

[02]

ii) For the system, find the following error constants:

[06]

- I Acceleration
- Π Velocity

 $\Pi\Pi$ Position

iii) For the system, find the steady state errors for the following unit inputs:

[06]

- I Parabolic
- Ramp Π
- Step Ш

SECTION B

Q5

(a) A unity feedback system is characterized by the open-loop transfer function

$$G(s) = \frac{K(s+15)}{(s+3)(s^2+7s)}$$

 $G(s) = \frac{K(s+15)}{(s+3)(s^2+7s)}$ Using the Routh criterion, calculate the range of values of K for the system to be stable.

[06]

(b) A feedback system has an open loop transfer function of

$$G(s)H(s) = \frac{Ke^{-s}}{s(s^2 + 5s + 9)}$$

Determine, by using the Routh criterion, the maximum value of K for the closed loop system to be stable.

[06]

(c) Consider the characteristic equation give below, determine the stability of the system.

$$s^5 + 2s^4 + 24s^3 + 48s^2 - 50 = 0$$

[80]

Q6

- (a) Define the following terms.
 - i) Complementary Root Loci (CRL)
 - ii) Root Contours (RC)

[06]

(b) A feedback control system has a open-loop transfer function

$$G(s)H(s) = \frac{K}{(s+2)(s^2+4s)}$$

Find the root locus as K is varied from 0 to ∞ .

[12]

(c) Hence find the range of K to keep the system stable.

[02]

 $\mathbf{Q7}$

- (a) Define following terms.
 - i. Phase margin
 - ii. Gain margin
 - iii. Phase crossover point
 - iv. Gain crossover point

[80]

(b) Sketch the asymptotic bode plot for a unity feedback system characterized by loop transfer function

$$G(s) = \frac{K(1+0.1s)}{s^2(1+0.001s)}$$

Show that the system is continuously stable. Find the range of values for which the system is stable.

[12]

Q8

(a) State three compensators used in control system engineering. Write the transfer functions each compensator and label the parameters.

[80]

(b) Briefly explain the how PID controller parameters effect to the rise time, overshoot, settling time and steady state error.

[12]

