The Open University of Sri Lanka Faculty of Engineering Technology Department of Electrical & Computer Engineering

Study Programme

: Bachelor of Technology Honours in Engineering

Name of the Examination

: Final Examination

Course Code and Title

: EEX4331- Circuit Theory and Design

Academic Year

: 2020/2021

Date

: 15th February 2022

Time

: 0930-1230 hrs

Duration

: 3 hours

General Instructions

- 1. Read all instructions carefully before answering the questions.
- 2. This question paper consists of Seven (07) questions in five (05) pages.
- 3. Answer any Five (5) questions only. All questions carry equal marks.
- 4. Answer for each question should commence from a new page.
- 5. This is a Closed Book Test (CBT).
- 6. Answers should be in clear handwriting.
- 7. Do not use a red color pen.
- 8. Adhere to usual notations.

1.

a. Consider the circuit shown in Figure 01-(a).

Figure 01-(a)

- i. Determine the Thevenin's voltage (V_{Th}) and Thevenin's resistance (R_{Th}) with reference to the resistance R_L of the circuit. [03 marks]
- ii. Represent the circuit shown in figure 01-(a) using the Thevenin's equivalent. [02 marks]
- iii. Determine the value of R_L to provide the maximum power transfer from the source. [02 marks]
- iv. Calculate the maximum power transfer of the circuit. [03 marks]

b. Consider the circuit shown in Figure 01-(b).

- i. Determine equivalent source voltage of the circuit. [05 marks]
- ii. Draw the simplified circuit using equivalent source voltage circuit of the Figure 01-(b). [02 marks]
- iii. Calculate the current through the R_L . [03 marks]

2. Consider the RLC circuit shown in Figure 02.

- i. Derive the differential equation that characterizes voltage and current of the circuit at any instant of time. Assume that the capacitor (C) is initially fully discharged. (Hint: use Kirchhoff's law). [05 marks]
- ii. Solving the differential equation you have written in 'i', obtain an expression to the charge of the capacitor (q(t)) at time t. [15 marks]
- 3. Consider the RLC circuit shown in Figure 03. At t = 0 the switch S_1 is closed.

Figure 03

- i. Write a differential equation relating voltages across each element using Kirchhoff's voltage law. Assume that the capacitor is initially fully discharged and no energy is stored in the inductor L. [02 marks]
- ii. Solving the differential equation, you have written in 'i', obtain an expression for the current through the circuit i(t) for t > 0. [12 marks]
- iii. Sketch the variation of current of the circuit against the time. (start from t = 0) [04 marks]
- iv. State the type of the response of this circuit. [02 marks]

4. Consider the circuit given in Figure 04. The switch S_1 is closed at t = 0 s.

Figure 04

- i. Write the differential equation to determine the current through the circuit after closing the switch. [02 marks]
- ii. Convert the differential equation in to s domain using Laplace Transform and obtain an expression to the impedance function Z(s) which is also in s domain.

 [02 marks]
- iii. Derive the solution for current through the circuit in s domain I(s).

[02 marks]

- iv. Using inverse Laplace transform, derive the solution for current through the circuit in time domain I (t). [08 marks]
- v. Using the expression derived in step iii above, obtain the natural response of the circuit in both time and s domain. [06 marks]

 (Hint Replace the voltage source with a voltage impulse)
- 5. Consider the circuit is shown in Figure 05. The switch S_1 is closed at t = 0s.

Figure 05

- i. Write the differential equation to find the current through the circuit after closing the switch S₁. [02 marks]
- ii. Write the characteristic equation of the differential equation derived in step i above and find root/s of it. [03 marks]
- iii. Solve the differential equation and obtain the complete solution to the current i(t) through the circuit. Use the initial conditions as given below. [12 marks] $V_C(0^+) = 5V$

(Hint: Consider the polarity of the capacitor voltage as indicated in the Figure 05).

iv. Sketch the variation of current i(t), starting at t = 0s.

[03 marks]

6.

i. Synthesize the following RC impedance function using Foster I and II, Cauer I and II forms. [16 marks]

$$Z(s) = \frac{(S+2)}{(S+1)(S+3)}$$

ii. Realize the following LC impedance function using Foster 1st form.

[04 marks]

$$Z(s) = \frac{(S^2 + 1)(S^2 + 3)}{S(S^2 + 2)}$$

7.

- i. Write the terminal characteristic equations of a general two-port network in matrix form using,
 - a. open circuit impedance (Z) parameters.
 - b. ABCD Transmission parameters.

[02 marks]

ii. Consider the two port network in the Figure 07.

Figure 07

Determine the ABCD parameters of the above network.

[08 marks]

b. Is the network reciprocal? Justify your answer.

[02 marks]

c. Calculate the image impedances at port 1 and port 2.

[06 marks]

d. Hence, find the image transfer constant of the network.

[02 marks]

