CEX6230 - GEOTECHNICS

Time allowed: Three Hours

Date: Monday, 21st November, 2016

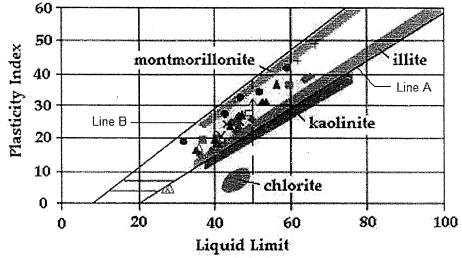
Time: 0930-1230

Answer five questions. All questions carry equal marks.

- 1. Fig. 1 shows how various clay mineral types plot on the Plasticity Chart.
 - A Define Liquid Limit; state how Liquid Limit is interpreted during the test.

(4 points)

B <u>Compare</u> engineering properties of a high plasticity soil and a low plasticity soil.


(4 points)

C <u>Discuss</u> what lines A and B (refer Fig. 1) represent.

(4 points)

- D For a given mineral type, Fig. 1 shows that the Plasticity Index tends to vary linearly with Liquid Limit. <u>Explain</u> why this is so. (4 points)
- E List the engineering properties that correlate with the Plasticity Index.

(4 points)

- Fig. 1
- Fig. 2 shows a soil profile of a land, where a compacted surcharge-fill of 1m is applied (surcharge-fill not shown in figure). An undisturbed specimen A is obtained from a depth of 7.5m from ground level, to perform an Unconsolidated Undrained Tri-axial Loading Test.
 - A <u>Compute</u> in-situ stresses σ_v , σ'_v , σ_h , and σ'_h of soil element A, assuming that the soil is normally consolidated. <u>State</u> any assumptions you have made. (4 points)
 - B <u>Compute</u> stress-path parameters corresponding to the situation described in 2A above. <u>State</u> the assumptions you've made. (3 points)
 - Plot the stress-path co-ordinates corresponding to the situation described in 2B above on a regular graph sheet. Name the axes. (2 points)
 - D <u>State</u> the cell pressure and back pressure you wish to maintain in the laboratory test specimen, if you intend to test the specimen at average in-situ conditions. <u>State</u> your reasons for selection of these values. (4 points)
 - E If the laboratory test specimen fails at a deviatoric stress of 60kPa, and the measured pore water pressure at failure is 85kPa, <u>plot</u> the failure envelope and the total stress path on the same graph sheet. <u>Show</u> principal values. <u>Sketch</u> the effective stress path on the same graph sheet. (3 points)
 - F Assuming that the surcharge fill has a unit weight of 17kN/m³, <u>plot</u> the total stress path for soil element A, on the same graph sheet. <u>Sketch</u> the corresponding effective stress path for soil element A, on the same graph sheet. (3 points)
 - G Comment on the short-term stability of the structure.

(1 point)

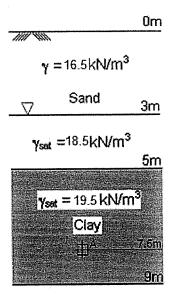


Fig. 2

- 3. Fig. 3 shows the details of a cantilever retaining wall. The shear strength parameters for the soil are c' = 0and $\phi' = 32^{\circ}$. The saturated unit weight of soil is 19kN/m³. The unit weight above the water table is 17kN/m³. The unit weight of concrete is taken to be 23.6kN/m³. If δ = 23° on the base of the wall.
 - Draw a free-body diagram that indicates all forces and reactions you would consider in your analysis.

(4 points)

Determine the factor of safety against sliding. В

(4 points)

С <u>Determine</u> the factor of safety against overturning. (4 points)

<u>Determine</u> whether the net force on the footing falls within its middle third. D

(4 points)

If you assume that 75% of the available frictional resistance of the soil is mobilised, discuss its

(4 points) influence on earth pressure.

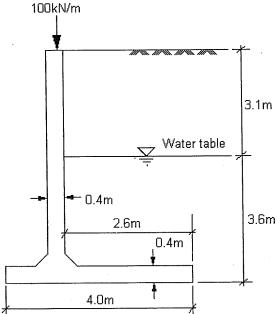


Fig. 3

- 4. A circular oil tank 10m in diameter exerts a uniform pressure of 120kPa on a sandy soil formation.
 - A <u>Compute</u> the stress distribution of soil at ground level, from the centre to the edge of tank. <u>Plot</u> the observed variation on a graph sheet. (4 points)
 - B <u>Compute</u> the stress distribution of soil at 5m below ground level, from the centre to the edge of tank. <u>Plot</u> the observed variation on the same graph sheet. (3 points)
 - C <u>Discuss</u> whether the stress variations plotted in 4A and 4B above, indicate that the foundation of the the tank is considered to be rigid. <u>State</u> your reasons. (3 points)
 - D Plot the variation of vertical stress increment, with depth, along the central axis of tank. (4 points)
 - E Hence, find the depth corresponding to a vertical stress increment of 6kPa. (2 points)
 - F List all parameters required to estimate the settlement of the tank. (4 points)

I, stress in percent of surface contact pressure

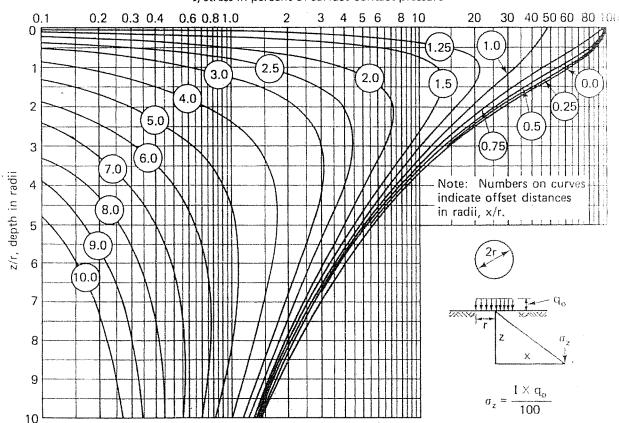


Fig. 4: Influence values, expressed in percentage of surface contact pressure, q₀, for vertical stress under uniformly loaded circular area (after Foster and Ahlvin, 1954, as cited by U.S. Navy, 1971)

- 5. A 10mx10m square raft foundation is to carry a 10,000kN uniformly distributed load (refer Fig. 5a). The clay layer has the following properties: $e_0 = 0.8$; $c_v = 2 \times 10^{-3} \, \text{m}^2 \, / \, \text{day}$; $G_s = 2.7$; $C_c = 0.8$; $C_r = 0.2$. The Pre-consolidation Pressure is found to be 80kPa.
 - A <u>Discuss</u> the validity of Terzarghi's assumptions in estimating total settlement of the clay layer.

(3 points)

B Compute the saturated unit weight of clay soil.

(3 points)

C Estimate the total settlement of the clay layer.

(4 points)

D State the assumptions you would use when computing the time for a certain settlement to occur.

(3 points)

E <u>Explain</u> which initial excess pore water pressure distribution you would use when computing the time taken for 80% of total settlement to occur. <u>State</u> your reasons for the selection. (3 points)

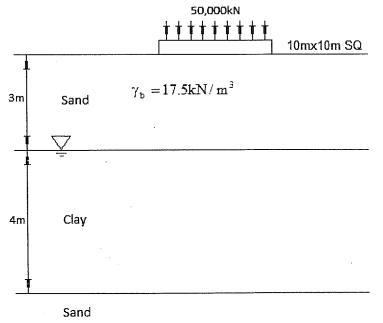


Fig. 5a

Variation of U versus Tx

U	Time Factor, T _v			
	Case 1	Case 2	Case 3	
0.000	0.000	0.000	0.000	
0.100	0.008	0.047	0.003	
0.200	0.031	0.100	0.009	
0.300	0.071	0.158	0.024	
0.400	0.126	0.221	0.048	
0.500	0.197	0.294	0.092	
0.600	0.287	0.383	0.160	
0.700	0.403	0.500	0.271	
0.800	0.567	0.665	0.440	
0.900	0.818	0.940	0.720	

Fig. 5b

- 6. The gravity dam shown in Fig. 6 has a 5m cut-off wall at point A. It has an upstream water depth of 20m and a tail-water depth of 5m. The Coefficient of Permeability of the soil is 0.003 cm/s.
 - A Sketch the flow net.

(5 points)

B Compute seepage flow.

(5 points)

C Compute the pore pressure at point B.

(5 points)

D Sketch the pore pressure distribution you would expect across the bottom surface of the dam.

(5 points)

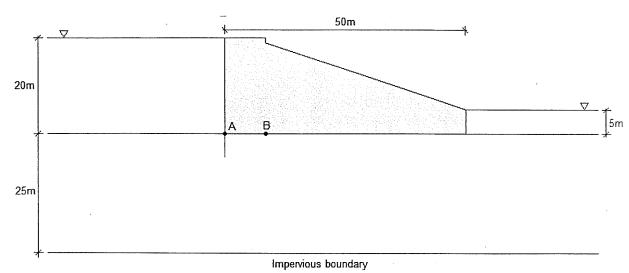
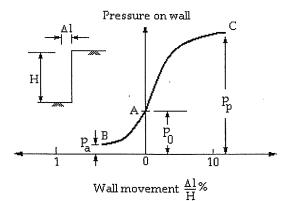



Fig. 6

7.

- A <u>Discuss</u> water infiltration through a partially saturated soil, during a rainy spell, occurred after an extended dry weather period. (5 points)
- B Explain the use of equations $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$ and $\phi = -k \left[\frac{p}{\rho g} + z \right] + c$ in defining flow through a porous medium. (5 points)
- C Discuss the concept explained in Fig. 7C below.

(5 points)

Away from back fill

Towards back fill

Fig. 7C

D Explain why the Residual Strength of a soil is used when assessing the stability of a slope, rather than using its Peak Strength. (5 points)

8. Fig. 8 shows a two rectangular footings, A and B, which is required to be connected with a strap, located at the same level. Both footings are located at 1m depth. Table 8 lists the required details.

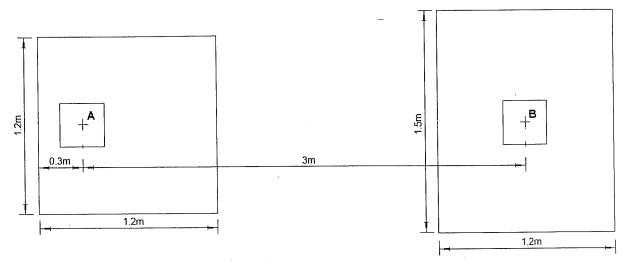


Fig. 8

Table 8

Description	Footing A	Footing B
Dead Load (kN)	125	100
Live Load (kN)	75	125
Footing thickness (mm)	200	300

- A <u>Compute</u> the moment that is required to be transmitted via the strap in order to maintain a uniform bearing stress on both footings, when carrying service loads. (4 points)
- B Compute the resulting bearing stresses in each footing, when carrying service loads. (4 points)
- C Compute the Net-ultimate Bearing Capacity for each footing. (6 points)
- D Compute the factors of safety for each footing, based on the results obtained above. (2 points)
- E <u>Discuss</u> how you would design the strap to determine its dimensions and reinforcement requirements. (4 points)

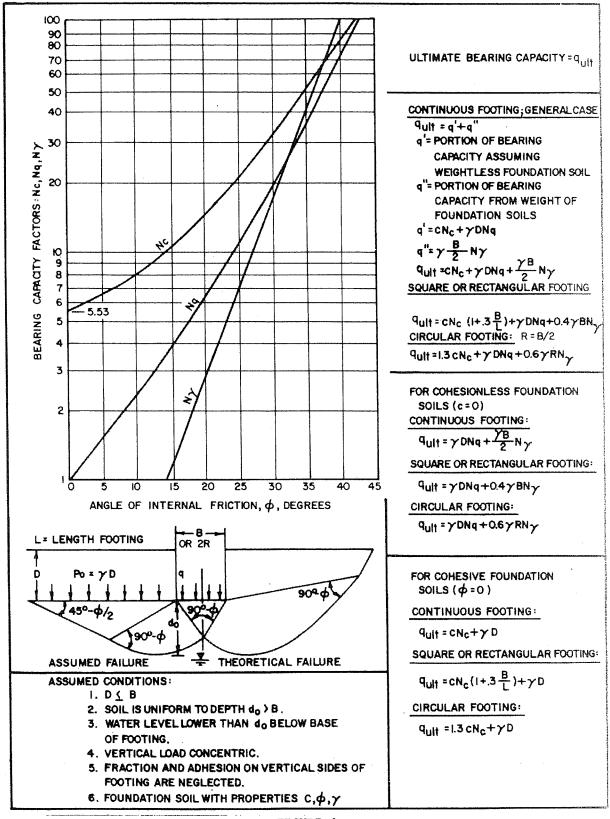


FIGURE 1 Ultimate Bearing Capacity of Shallow Footings With Concentric Loads