The Open University of Sri Lanka

B.Sc/B.Ed. Degree Programme

Final Examination - 2021/2022

Pure Mathematics - Level 05

PEU5305 - Complex Analysis I

Duration: - Two hours

Date: - 25-10-2022

Time: -01.30 p.m. - 3.30 p.m.

Answer FOUR Questions ONLY.

- 1.

 a) Prove that for every non-zero complex number z, there is a complex number which we shall denote by z^{-1} such that $z \cdot z^{-1} = 1$.
 - b) Let $z_1, z_2 \in \mathbb{C}$. Show that $z_1 \overline{z_2} + \overline{z_1} z_2$ is real.
 - c) Let $z \in \mathbb{C}$ and $\text{Im } z \neq 0$. Show that $\left(\frac{z+1}{z-1}\right)^2$ is real if and only if $z \cdot \overline{z} = 1$.
 - d) Prove that $|\operatorname{Re} z| \le |z|$ and $|\operatorname{Im} z| \le |z|$ for all $z \in \mathbb{C}$.

2.

- a) Give the definition of each of the following:
 - i. A bounded subset E of \mathbb{C} .
 - ii. An open subset E of \mathbb{C} .
- b) Sketch the following sets and determine whether each is open, each is closed, each is bounded, and each is a region:

i.
$$E_1 = \{z \in \mathbb{C} : \operatorname{Re}(z) = \operatorname{Im}(z)\}.$$

ii.
$$E_2 = \{z \in \mathbb{C} : |z-2| \le 5\}.$$

iii.
$$E_3 = \left\{ z \in \mathbb{C} : z = r(\cos\theta + i\sin\theta), r > 0, \frac{\pi}{4} < \theta < \frac{\pi}{2} \right\}.$$

- c) Prove or disprove each of the following:
 - i. The set of all interior points of the set $S = \{1 + in : n = 1, 2, 3, ...\}$ is S.
 - ii. An arbitrary union of open sets is open.

3.

- a) Give the definition of each of the following:
 - i. A complex valued function f(z) is analytic in an open subset of \mathbb{C} .
 - ii. A complex valued function f(z) is analytic at a point $z_0 \in \mathbb{C}$.
- b) Determine where the function $f(z) = 2x^3 + xy^2 + i\left(\frac{y^3}{3} + 6x^2y\right)$ is differentiable and where it is analytic.
- c) Prove that the function u(x,y) = 2x(1-y) is harmonic. Find a function v(x,y) such that f(z) = u + iv is analytic in \mathbb{C} .
- d) Let f(z) = u + iv be analytic in a region G. Show that if $\operatorname{Re} f(z)$ is constant in G, then f(z) is constant in G.

4.

a) Let $f(z) = \frac{1}{(z-1)(z-2)}$. Find the Laurent series expansion of f(z) in each of the following annuli:

i.
$$1 < |z| < 2$$
,

ii.
$$|z| > 2$$
,

iii.
$$0 < |z-1| < 1$$
.

- b) Show that the function $f(z) = \frac{e^z}{z}$ has a pole of order 3 at z = 0.
- c) Find and classify the singularities of the function $f(z) = \frac{e^z}{(z-1)(z+i)^2}$.

- 5.
 - a) State Cauchy's Integral Formula.
 - b) Using Cauchy's Integral Formula, evaluate the integral $\int_C \frac{\cos z}{z^2 6z + 5} dz$, where C is the circle with radius 4 centered at 0, oriented counterclockwise.
 - c) Apply Cauchy's integral formula to $\cos z$ with the contour $z = e^{i\theta}$; $0 \le \theta \le 2\pi$ to show that $\int_{0}^{2\pi} \cos(\cos \theta) \cosh(\sin \theta) d\theta = 2\pi$ and $\int_{0}^{2\pi} \sin(\cos \theta) \sinh(\sin \theta) d\theta = 0$.
- a) State Cauchy's Residue Theorem. Use the residue theorem to calculate each of the following integrals:
 - i. $\int_C \frac{5z}{z^2+4} dz$, where C is the circle |z|=2, oriented counterclockwise.
 - ii. $\int_C \cot z \, dz$, where C is the circle |z| = 4, oriented counterclockwise.
 - b) Use the residue theorem to show that $\int_{0}^{2\pi} \frac{4}{5 + 4\cos\theta} d\theta = \frac{8\pi}{3}.$

٠ •