The Open University of Sri Lanka Department of Mathematics Advanced Certificate in Science Programme MYF2521/MHF2521 - Combined Mathematics 3 - Level 2 Final Examination 2021/22

Date: 17-09-2022

From: 09:30 am. To 12:30 pm.

Answer All Questions in Part A and Answer Five Questions in Part B.

PART A

1. Using the Principle of Mathematical Induction, prove that

$$\sum_{r=1}^{n} (2r+1) = n(n+2), \text{ for all } n \in \mathbb{N}.$$

- 2. Find the set of real values of x for which $\frac{1}{2}|x-1| > |x-4|$.
- 3. How many different numbers with five digits can be made from the digits 1, 2, 3, 4 and 5, if each digit is used only once.

How many of these numbers

- (i) are even numbers?
- (ii) have the digits 3 and 4 next to each other?
- 4. Using the binomial expansion for a positive integer index, show that

$$(1+\sqrt{3})^6 + (1-\sqrt{3})^6 = 416$$

Hence, find the integer part of $(1+\sqrt{3})^6$

5. Sketch on the same Argand diagram, the loci of points representing complex number z satisfying

(i)
$$|z - i| = 1$$

(i)
$$|z - i| = 1$$

(ii) $Arg(z - i) = \frac{\pi}{6}$.

Find the complex number represented by the point of intersection of these loci in the form $r(\cos\theta + i\sin\theta)$ where r > 0 and $0 < \theta < \frac{\pi}{2}$.

6. If $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ show that $A^2 - 3A = -I$. Hence, find A^{-1} .

7. Evaluate the following limits.

(a)
$$\lim_{x \to -3} \frac{x^4 - 81}{x^3 + 27}$$

(b)
$$\lim_{x\to 0} \frac{\sin 3x}{\sin 2x}$$

(c)
$$\lim_{x \to \infty} \frac{x^4 - 1}{3x^4 + x^2 + 1}$$

8. Differentiate $y = ax^2 + bx + c$ using the first principles.

The curve defined by y passes through the point (0, 1) and the gradient of the curve at $\left(-\frac{1}{4}, \frac{7}{8}\right)$ is zero. Find the values of a, b and c.

9. A curve C is given by the parametric equation $x = 3\sin^2(\theta/2)$ and $y = \sin^3\theta$ for $0 < \theta < \frac{\pi}{4}$. Show that $\frac{dy}{dx} = \sin 2\theta$.

If the gradient of tangent at a point P on C is $\frac{\sqrt{3}}{2}$, find the value of the parameter θ corresponding to P.

10. Find the area of the region on the rectangular Cartesian plane enclosed by the curves $y = x^2$ and $y = 2x - x^2$.

PART B

11. (a) Write the general term of the series $\frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2} + \cdots$. If $f(r) = \frac{1}{r^2}$, derive an expression for f(r) - f(r+1).

Hence, find the sum of the first *n* terms of the series $\frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2} + \cdots$

Find the sum to infinity of this series and find whether the series is convergent.

(b) Show that $\frac{\sqrt{3}-1}{\sqrt{3}+1} = 2 - \sqrt{3}$ and $\frac{\sqrt{3}+1}{\sqrt{3}-1} = 2 + \sqrt{3}$.

Hence, find the value of $\left(\frac{\sqrt{3}-1}{\sqrt{3}+1}\right)^4 + \left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)^4$.

- 12. (a) The complex numbers $z_1=2+2i$ and $z_2=1+\sqrt{3}i$ are represented in the Argand diagram by the points A and B. O is the origin.
 - (i) Mark z_1 and z_2 in the Argand diagram.
 - (ii) Find the lengths of OA, OB and AB.
 - (iii) What type of a triangle is OAB?
 - (iv) If OABC is a rectangle, what is the complex number represented by C?
 - (b) If $z = \cos \theta + i \sin \theta$, for positive values of n,

show that
$$z^n + \frac{1}{z^n} = 2\cos n\theta$$
 and $z^n - \frac{1}{z^n} = 2i\sin n\theta$.

Hence, show that

$$32\cos^6\theta = \cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10$$
 and

$$32\sin^6\theta = -\cos 6\theta + 6\cos 4\theta - 15\cos 2\theta + 10.$$

13 Differentiate following functions with respect to x.

(a)
$$y = (x^2 + 1)(3x^2 - 7)$$

(b)
$$y = \frac{\sqrt{x} + \sqrt{5}}{\sqrt{x} - \sqrt{5}}$$

(c)
$$y = \sin^2 x + \tan^2 x$$

(d)
$$y = x^{3x}$$

14. (a) Find the stationary points of the curve $y = \frac{x-2}{(x-1)(x+2)}$ and determine whether they are relative maximum points, relative minimum points or points of inflexion.

Hence, sketch the graph of the function

(b) Show that the maximum volume of a cylinder that can be contained in a cone of height hand radius r such that the axes of the cylinder and the cone coincide, is $\frac{4}{27}\pi r^2h$.

15. (a) If $I = \int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin^2 x + \cos^2 x} dx$ and $J = \int_0^{\frac{\pi}{2}} \frac{\cos^2 x}{\sin^2 x + \cos^2 x} dx$ then using suitable substitution prove that I = J.

Hence, evaluate $\int_0^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin^2 x + \cos^2 x} dx.$

(b) Evaluate following integrals.

$$(i) \int \frac{2}{(x+1)(x^2+1)} dx$$

(ii)
$$\int \frac{\cos x}{\sqrt{\sin x}} dx$$

- 16. (a) Find the volume generated, when the part of the curve $y^2 = 4\alpha x$ in the interval $0 \le x \le a$ is rotated by four right angles about the x-axis.
 - (b) A is a matrix such that $A^{-1} = -A$.
 - (i) Show that $A^2 = -1$.
 - (ii) Find the value of k such that $A^4 + A^3 + A^2 + A + A^{-1} = kA$.
 - (iii) If $A = \begin{pmatrix} a & -a \\ 2 & -a \end{pmatrix}$ and $A^{-1} = -A$, find the value of a.
- 17. If the circles $x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$ and $x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$ intersect orthogonally show that $2g_1g_2 + 2f_1f_2 = c_1 + c_2$.

Find the equation of the circle through the origin which intersect the circles

$$x^{2} + y^{2} - 6x + 8 = 0$$
 and $x^{2} + y^{2} - 2x - 10y - 4 = 0$ orthogonally.