The Open University of Sri Lanka Department of Electrical and Computer Engineering ECX6243/ECX6333 – Microwave Engineering and Applications Final Examination 2015/2016

Date: 2016-12-02

Time: 9.30-12.30hrs.

Answer any FIVE questions.

1.

- (a) (i) Write the relationship between $\nabla \times \underline{H}$, \underline{J} and \underline{D} .
 - (ii) Using the answer to (i) derive an expression for the charge density (ρ) induced in a metallic medium when an electromagnetic wave propagating. [For any given vector \underline{A} , $\nabla \cdot (\nabla \times \underline{A}) = 0$]
- (b) When an electromagnetic wave is propagating in a metal there will be induced electric charges.Show that the induced charge density (ρ) in copper disappears extremely fast.

Conductivity of copper = $6 \times 10^7 S/m$ Permittivity of copper at the given frequency $\approx 8.85 \times 10^{-12} F/m$

[Assume that the charge density disappears when it becomes 5 % of its original value. Also note that $e^{-3} = 5 \%$]

2.

- (a) (i) What is a TEM wave?
 - (ii) For a TEM plane wave propagating in air, draw the \underline{E} vector and the \underline{H} vector. Also mark the direction of propagation on the same diagram.
 - (iii) Speed of a TEM wave in air is c_0 . The same wave travels at a speed of c_1 in a dielectric medium whose relative permittivity and relative permeability are ε_r and μ_r respectively.

Write the relationship between c_1 and c_0 .

- (b) In a coaxial cable a wave travels from A to B. Due to a line fault, a wave starting from A at t=0 is reflected back to A at $t=1.5~\mu~s$. Locate the position of the fault. [The dielectric medium in the cable has $\varepsilon_r=2.1$ and $\mu_r\cong 1$. Speed of light in free space is $3\times 10^8~m~s^{-1}$]
- 3.
- (a) The inner surface of a waveguide is some times plated with a thin layer of Silver or Gold. What is the reason for this?
- (b) Why can't TEM mode exist in a waveguide?

(c)
$$\vec{E}_x = -\frac{jm\beta\pi}{ak_c^2} \vec{A} \cos\left(\frac{m\pi x}{a}\right) \sin\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\vec{E}_y = -\frac{jn\beta\pi}{bk^2} \vec{A} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

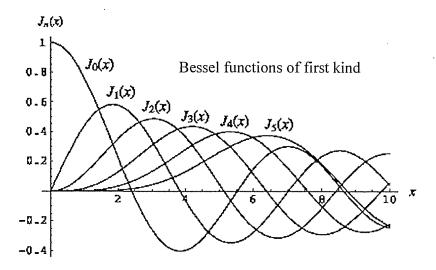
$$\vec{H}_x = \frac{jn\omega\varepsilon\pi}{bk^2} \vec{A} \sin\left(\frac{m\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right) e^{-j\beta z}$$

$$\vec{H}_{y} = -\frac{jm\omega\varepsilon\pi}{ak_{c}^{2}}\vec{A}\cos\left(\frac{m\pi x}{a}\right)\sin\left(\frac{n\pi y}{b}\right)e^{-j\beta z}$$

Transverse Field components inside a rectangular waveguide for TM_{mn} mode are given above.

- (i) Find the value of the above field components for
 - 1. TM_{0n} mode
 - 2. TM_{m0} mode
- (ii) The cutoff frequency f_c for a waveguide operating in $TM_{\it mm}$ mode (or $TE_{\it mm}$ mode) is

given by
$$f_c = \frac{1}{2\sqrt{\mu\varepsilon}} \left[\left(\frac{m}{a} \right)^2 + \left(\frac{n}{b} \right)^2 \right]^{\frac{1}{2}}$$
. Use the results of (i) to show that the


dominant TM_{mn} mode is TM_{11} .

(iii) Find the cutoff wave length for TM_{11} mode if the waveguide is filled with air. For the waveguide $a=2b=4.4\ cm$

4.

- (a) The radial magnetic component H_{ρ} in a rectangular waveguide whose internal radius is a, is given by $H_{\rho} = A J_n(\rho \ k_c) \sin n\varphi$, where A is a mode- and the frequency dependent constant. $J_n(x)$ is a Bessel function of first kind and of order n. Show that $J_n(a \ k_c) = 0$.
- (b) The propagation constant β_{nm} for a wave propagating in a cylindrical waveguide for TM_{nm} mode is given by $\beta_{nm} = \sqrt{\omega^2 \mu \varepsilon \left(\frac{\rho_{nm}}{a}\right)^2}$
 - (i) Derive an expression for the cutoff frequency.

(ii)

Some Bessel functions of first kind are given in the above diagram. Find the lowest cutoff frequency of a circular waveguide operating in TM_{3m} mode. The internal radius of the waveguide is 1.4 cm. The waveguide is filled with air.

5.

- (a) A wave enters into the auxiliary arm (arm 3) of an E-plane Tee. Draw the E-field patterns in arms 1, 2 and 3 for TE_{10} mode.
- (b) For the *E*-plane Tee given in (a), let the change of the phase of the signal when coupled from port 3 to port 1 is α , and the change of the phase is β when the signal is coupled from port 3 to port 2. Is $\alpha = \beta$? Justify your answer.
- (c) Write the scattering matrix [s] for an E-plane Tee. Minimize the number of variables in [s]. Describe the principles you applied for minimization process.
- (d) If the above Tee junction is lossless, explain how you would evaluate [s]. [Actual calculations are not expected.]

6.

- (a) To measure the VSWR of a line, the forward wave and the reflected wave should be separated first. Then they should be independently connected to the two input terminals of a ratio meter.
 - With the help of a diagram explain how this done using two directional couplers.
- (b) When designing a r.f communication network for a larger area, that area is subdivided into number of smaller areas (cells). What is the main advantage of process?
- (c) Briefly explain the following with reference to a cellular communication network:
 - (i) frequency reuse ratio.
 - (ii) co-channel interference.

(iii) sectoring

7.

- (a) A cellular operator is planning a cellular network in a certain area. The total bandwidth allocated for the operator is 69 MHz. Duplex channels are used for voice and control purposes. The bandwidth of a duplex channel is 50 kHz. 1 MHz is reserved for control channels. If the frequency reuse ratio is 7
 - (i) find the total number of channels available per cell.
 - (ii) find the number of voice channels available per cell.
- (b) Explain why the $\frac{S}{N}$ ratio in a cellular system cannot be improved by increasing the transmitter power.
- (c) How does the $\frac{S}{N}$ ratio depend on the frequency reuse ratio?

8.

- (a) Using a diagram briefly explain the principle of operation of a double cavity Klystron amplifier.
- (b) Draw a block diagram of the down link of a satellite communication system. Also discuss the various stages of processing the received signal undergoes.
- (c) (i) What is understood by the aperture of an antenna?
 - (ii) Total power transmitted by an antenna at a point P is P_i . Find the power density at a point Q if PQ = d. The transmitting gain of the antenna in the direction of PQ is G_i .
 - (iii) An object at Q with capture area A totally reflects the signal incident on it. Reflected signal is recaptured by the antenna at P. If the receiving gain of the antenna in the direction of PQ is G_R write an expression for the power captured by the antenna.