The Open University of Sri Lanka **Department of Electrical and Computer Engineering** ECX6241 – Field Theory Final Examination - 2015/2016

Date: 2016-11-25 Time: 0930-1230

Instructions for Candidates:

- Answer five questions by selecting two questions from Section A, two questions from Section B and one question from Section C.
- Each question of Section A, B and C carries 15, 20 and 30 marks respectively.
- All the notations have their usual meanings.

Section A

Q1.

- (a) Explain the physical meaning of the divergence of a vector. [4]
- (b) Prove that $\nabla \cdot \mathbf{r} = 3$ and $\nabla \times \mathbf{r} = 0$ if $\mathbf{r} = x a_x + y a_y + z a_z$ [4]
- (c) Find the rate at which the scalar function $V=r^2\sin2\phi$ in cylindrical coordinates in the direction of the vector $A = a_r + a_\phi$ at the point $(2, \pi/4, 0)$

Q2.

- Show that $\nabla^2 F = \nabla(\nabla \cdot F) \nabla \times \nabla \times F$ (a) [3]
- Find the Laplacian of the scalar field

$$F = rz\sin\phi + r^2 + z^2\cos\phi$$
 [5]

Prove that $\nabla^2 \left(\frac{1}{r}\right) = 0$, with usual meaning for r. (c) [7]

Q3.

- (a) State the Divergence theorem [3]
- (b) Discuss the properties of a solenoidal and rotational vector fields. [4]
- (c) Given that the vector $\mathbf{D} = \frac{5\rho^2}{4} \mathbf{a}_{\rho}$ in spherical coordinates. Verify both sides of the divergence theorem for the volume enclosed by $\rho = 1$ and $\rho = 2$. [8]

Section B

Q4.

- (a) Discuss three properties of electric flux.
- [3] (b) A line charge of length of 2l has a linear charge density of λ . Show that the electric field at a distance r is

$$E_r = \frac{\lambda}{2\pi\varepsilon_0 r} \sqrt{\left(\frac{r}{l}\right)^2 + 1} a_r$$
 [12]

- (c) Find and plot $\lim_{r \to \infty} E_r$ [3]
- (d) Comment on the result in (c). [2]

Q5. (a) What is meant by the edge effect in capacitors? (b) A capacitor is made of two coaxial metallic cylinders of radii r_1 and r_2 (r_1 length L ($L >> r_2$). The region between r_1 and $r_3 = \sqrt{r_1 r_2}$ is filled with a dielectric constant K_1 and the remaining region is filled with a medium of constant K_2 . Find the capacitance of the system.	nedium of f dielectric [12]
(c) Hence, derive the equation for the capacitance of a coaxial capacitor.	[5]
Q6.	
(a) Draw the Hysteresis curve or magnetisation (B-H) curve and explain the regions.	[6]
(b) Show that the self-inductance of a solenoid of finite length l , radius r and of turns is	N number
$L = \frac{\mu N^2 \pi r^2}{l^2} \left(\sqrt{r^2 + l^2} - r \right)$	[10]
(c) Hence find the self –inductance per unit length of an infinitely long soleno	oid. [4]
Section C	
Q7.	
(a) Describe and discuss the medium characteristics of	
i. Free space ii. Lossless dielectrics	
iii. Lossy dielectrics	
iv. Good conductors	[2×4]
(b) State the Poynting's theorem and discuss its physical interpretation.	[6]
(c) A medium characterized by $\sigma=0$, $\mu=\mu_0$, $\varepsilon=\varepsilon_0$ and $E=20\sin(10^8t-\mu_0)$	$3z) a_y$
i. Show that \boldsymbol{E} satisfies the Gauss's law for electric fields.	[4]
ii. Calculate $oldsymbol{eta}$ and $oldsymbol{H}$.	[12]
Q8. Briefly explain any three topics of the following.	
(a) Micro strip patch antenna	
(b) Skin depth	
(c) Electromagnetic induction	
(d) Magnetic resonance imaging	[10 0]
(e) Magnetic levitation	$[10 \times 3]$