

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. DEGREE PROGRAMME / STAND ALONE COURSE 2014/2015 LEVEL 5-FINAL EXAMINATION CHU 3131/CHE 5131 THE CHEMISTRY OF SUGARS, AMINO ACIDS AND RELATED COMPOUNDS

DURATION: 2 HOURS

Friday, 30th October 2015

9.30 a.m. - 11.30 a.m.

Answer any FOUR questions only.

If you have answered more than four questions, only the first four answers will be marked.

- 1. (a) (i) What are nucleic acids?
 - (ii) What are the components of the deoxyribonucleic acid (DNA)?
 - (iii) How does ribonucleic acid (RNA) differ from DNA?
 - (iv) Draw the structure of the nucleotide, formed from 2'-deoxyribose, guanine and phosphate.

(40 Marks)

(b) Phenolic compounds given below are derived from different biosynthetic pathways. Name the possible biosynthetic pathway for each of them.

(i)
$$O CH_2CH=CH_2$$
 $O CH_2CH=CH_2$ $O CH_2CH=CH_2$ (ii) $O CH_3$ $O CH_3$

(20 Marks)

(c) Write the intermediates (A-D) in the biosynthesis of Sinapic acid from Phenylalanine, PhCH₂CH(NH₂)COOH.

(40 Marks)

2. (a) Kaempferol (E) is a flavonol. UV spectrum of kaempferol (E) in ethanol shows an absorption band in the region 250 - 270 nm.

Kaempferol (E)

- (i) a) Indicate the shift observed in the UV spectrum of kaempferol (E) when AlCl₃ is added. Explain your observation.
 - b) Draw the structure of the complex that is responsible for the shift.
- (ii) What change would you expect in the UV spectrum of (E) when alcoholic NaOAc is added? Explain your answer.
- (iii) Indicate clearly the carbon atoms that contain hydrogen atoms which could show *ortho* and *meta* coupling in the H-NMR spectrum of Kaempferol (E).

(50 Marks)

(b) List five biological activities of flavonoids.

(20 Marks)

(c) Give the mechanism involved in the biosynthesis of compound G from F indicating the enzyme involved.

(30 Marks)

3.(a) Draw the structures of the products (H-K) you would expect in the following reactions.

(i)
$$CH_3CHO + NH_3 + HCN \longrightarrow H \xrightarrow{H^+/H_2O} I$$

(ii)
$$H_3C-\overset{\circ}{C}-COOH + (CH_3)_3CCCI \xrightarrow{OH^-} J$$

(iii)
$$NH_2CHRCOOH + PhCH_2OH \xrightarrow{HCI}$$
 k

(30 Marks)

(b) (i) Phenylalanine and glycine are the N-terminal and C-terminal residues respectively of a tripeptide composed of phenylalanine, glycine and alanine. Write the structural formula for the tripeptide.

(ii) Give the structural formulae of the products obtained when the tripeptide is reacted with 2,4-dinitroflurobenzene followed by acid hydrolysis.

(40 Marks)

(c) How would you effect the following transformation? Give the necessary reagents and write the mechanism for the reaction.

(30 Marks)

- 4. a) Draw the structures of the major products when β -D-glucopyranose is treated with
 - (i) CH₃COCl, dry CH₃OH/80°C.
 - (ii) excess Ac₂O, pyridine, 120°C

β-D-glucopyranose

(b) How would you effect the following conversion?

(30 Marks)

(c) Explain one chemical test which may be used to distinguish between methyl α -D-glucopyranose (I) and α -D-glucopyranose (II).

(15 Marks)

- (d) Write down the Fischer projection formula of all the D-pentoses having the structural formula, OHC(CHOH)₃CH₂OH. Which of these on oxidation with nitric acid give optically inactive dicarboxylic acids? Explain briefly your answer.

 (25 Marks)
- 5. (a) Outline, using a flow chart, how you would isolate the alkaloid fraction from a methanol extract of a plant.

(20 Marks)

(b) Devise a simple synthesis of tropic acid starting from acetophenone (C₆H₅COCH₃).

Tropic acid

(40 Marks)

(c) Postulate the biosynthetic pathway leading to ephedrine from phenylalanine.

- 6. (a) (1) Deduce and give the structures of lactose, a disaccharide which is present in
 - (i) It is hydrolysed by β -galactosidase to D-glucose and D-galactose.
 - (ii) It is a reducing sugar that mutarotates.

milk.

- (iii) Its osazone is hydrolysed to D-galactose and D-glucosazone.
- (iv) Methylation followed by hydrolysis of lactose gives 2,3,6-tri-O methyl-D-glucose and 2,3,4,6-tetra-O-methyl-D-galactose.
- (2) Give the structural formula for the osazone of lactose.

(b) Give the structures of compounds (L-N) in the following reaction scheme.

(30 Marks)

(c) Reactions involved in the synthesis of nicotine are given below. Identify the compounds O-Q in the reaction scheme.

(30 Marks)