

THE OPEN UNIVERSITY OF SRI LANKA B.Sc. & B. Ed. DEGREE / STAND ALONG COURSE IN SCIENCE - LEVEL 5 ASSIGNMENT TEST II (NBT) 2015/2016

CMU3122/CME5122 - Organometallic Chemistry

11 th May 2016 (Wednesday)	4.15 - 5.15 p.m
ANGWED ALL OHECTIONS	

ver the vill not

ANSWER <u>ALL</u> QUESTIONS Select the most correct answer/choice to each question given below. Mark a cross (X) o most suitable answer on the given answer script . Any answer with more than one cross vbe counted.
PART A (45 marks)
 Consider the following statements regarding [MeMn(CO)₅] + CF₂=CF₂ → [Mn(CF₂CF₂Me)(CO)₅] (i) Oxidation number of the metal is not changed. (ii) Valence Electron Count of the metal is not changed. (iii) It can be classified as "1,1-insertion". The correct statement/s is/ are 1) (i) only. 2) (i) & (iii) only. 3) (i) & (ii) only. 4) (ii) & (iii) only. 5) (i), (ii) & (iii).
2. Wilkinson's Catalyst is 1) [PdCl ₂ (PPh ₃) ₃] 2) [RhCl(PPh ₃) ₃] 3) [RuCl ₂ (PPh ₃) ₃] 4) [PdCl ₄] ²⁻ 5) [RuHCl(PPh ₃) ₃]
3. Most unlikely reaction that would take place is $ \begin{array}{ccccccccccccccccccccccccccccccccccc$
 4. Pick the incorrect statement regarding oxidative addition reaction? 1) Coordinatively saturated metal centres can undergo oxidative addition reaction. 2) In most cases, coordination number of the metal is increased by 2 units. 3) Oxidation number of the metal is always increased by 2 units. 4) Oxidative addition is facile if the metal centre is coordinatively unsaturated. 5) [Co₂(CO)₈] + H₂ → 2 [HCo(CO)₄]
 5. Which statement is not true about [Fe(PMe₃)₂(CO)₃]? 1) The IUPAC name is tricarbonylbis(trimethylphosphine)iron. 2) CO is a good π-acceptor ligand.

- 3) It shows only one IR band.
- 4) The coordination number of iron is 5.
- 5) The $\nu(CO)$ of $[Fe(PMe_3)_2(CO)_3]$ is lower than that of $[Fe(CO)_5]$.
- 6. $[Fe(CO)_5]$ can be converted into $[HFe(CO)_4]^-$ by reacting it with 1) HCl $2) H_2$ 3) OH⁻ 4) H

5) HOAc

7. What is the major prod 1) AlClMe ₂ (PPh ₃ 3) Al[RhClMe ₃ (Ph ₃) 5) AlMe(PPh ₃) ₃) ₃ 2) [RhMe(P	-/	
1) $[Os_3(CO)_{12}]$	has got bridging carbonyl li 2) $[Ir_4(CO)_{12}]$ 5) $[Fe_3(CO)_{12}]$	3) [Ru ₃ (CO) ₁₂]	
 9. γ-Hydride abstraction control 1) trans-[NiBr(ON 3) [EtCo(CO)₃] 5) [(η⁵-C₅H₅)Co(ON 3) 	$Me)(PMe_3)_2] 2) [1$	Ni(PMe ₃) ₄] Me ₃ SiOMn(CO) ₄]	
(i) It could under (ii) It reacts with (iii) [PtMe ₂ (dppe) The correct statements 1) (ii) only.	go oxidative addition with excess MeLi to give [PtMe] reacts with MeI to give [P	$e_2(\text{dppe})$].	
1) (i) only.		[iii) $[(\eta^5-C_5Ph_5)Ta(OCH_2P)]$ seen in 3) (i) & (iii) only.	'h) ₃]
12. What is the product fo 1) [Mn ₂ (CO) ₈] 3) [Mn(CO) ₅] 5) [Mn(η ³ -allyl)(2) [Mn(η²–a 4) [Mn(η³–a		
 the metal is continued. the metal is continued. the metal is continued. electron without. 	Br ₂ on a coordinated CH ₂ = coordinatively unsaturated. In high oxidation state. coordinated to good sigma delrawing groups are on coordinated to coordinated to coordinate on coordinated.	lonor ligands.	
14. How many IR bands d 1) 1 2	loes $[V(CO)_6]^-$ show? 3) 3	4) 4 5) 5	
 (i) Back bonding (ii) Back bonding (iii) The CO stretc M₃(μ₃-CO The correct statement 	*	ength. strength. ne following order,	
1) (i) only 4) (ii) & (iii) only	2) (i) & (ii) only 5) (i), (ii) & (iii)	3) (i) & (iii) only	

THE OPEN UNIVERSITY OF SRI LANKA B. Sc DEGREE PROGRAMME 2015/2016 CMU3122/CME5122 – ORGANOMETALLIC CHEMISTRY- LEVEL 5 ASSIGNMENT TEST-II (Part A)

MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer.

						-												
															Par	t A		
Reg. No	٥.	For Examiners Use											Par					
												Marks	2		Tota	al %		
								· ·					,	L				
				С	orr	ect Ans	wers	5										
				W	ron	g Answe	ers											
				T	ota!	1												
													-					
							,											
1.	1	2	3	4	5	2.	1	2	3	4	5	3.	1	2	3	4	5	
						_				•								
4.	1	2	3	4	5	5.	1	2	3	4	5	^ 6.	1	2	3	4	5	
						•						_						
7.	1	2	3	4	5	8.	1	2	3	4	5	9.	1	2	3	4	5	
						_												
10.	1	2	3	4	5	11.	1	2	3	4	5	12.	1	2	3	4	5	
	L	1	1			1				1		J		1	L	L		
13.	1	2	3	4	5	14.	1	2	3	4	5	15.	1	2	3	4	5	

Part B (55 marks)

Answer the questions in the space provided. Attached sheets will not be graded.

- 1. (a) (i) What is the **molecular formula** of the product (A) formed due to oxidative addition of dioxygen to [IrCl(PPh₃)₃]?
 - (ii) Draw the structures of the three isomers of (A).

(b) The dimer [(η⁵-Cp)Ru(CO)₂]₂ reacts with K to give a mononuclear salt (P). (P) with PhI gives (Q). Under pressure, (Q) reacts with CO to give another 18e-complex (R). Identify (P), (Q) and (R).

(P)(Q)

(R)

(c) Arrange $CH_2=CH_2$, EtCH=CHEt and $CF_2=CF_2$ in the order of increasing π -acceptability.

.....

- (d) Identify the product(s) of the following reactions using the hint given in the brackets.
 - (i) $[(\eta^5-Cp)Zr(CO)_2] + 2 \text{ MeC} \equiv \text{CMe} \rightarrow 16\text{e-complex } (\mathbf{K}) + \text{gas } (\mathbf{L})$ (oxidative coupling)
 - (ii) [MeMn(CO)₅] + 13 CO \rightarrow 18e-complex (**M**) (migratory insertion)

(K)

(L)

 (\mathbf{M})

- (e) Write on the dotted line, the **compound/reagent(s)** which can be used to carry out the following conversions.
 - (i) $[(\eta^5-Cp)(OC)_3Mo(\eta^1-C_3H_5)] \rightarrow [(\eta^5-Cp)(OC)_3Mo(\eta^2-CH_2=CHMe)]^+$ ------
 - (ii) $[Mn(CO)_5]^- \rightarrow [Mn(Et)(CO)_5]$ -----
- (f) $[(\eta^5-Cp)Co(Et)(PPh_3)]^+$ undergoes β -hydride abstraction to give a 18e-olefin complex (**Z**). Draw the structures of (**Z**).

CMU3122/CME5122 - Organometallic Chemistry - Level 5 Answer Guide to Assignment Test-II held on 11-05-2016

Part A - MCQ ANSWERS

1. (3) **2.** (2) **3.** (2) **4.** (3) **5.** (3) **6.** (3) **7.** (2) **8.** (5) **9.** (4) **10.** (5)

11. (2) **12.** (4) **13.** (3) **14.** (1) **15.** (2)

Part B

(1) (a) (i) [IrCl(O₂)(PPh₃)₃] (ii)

(b) $P = 2 K [(\eta^5-Cp)Ru(CO)_2]$ $Q = [(\eta^5-Cp)Ru(Ph)(CO)_2]$ $R = [(\eta^5-Cp)Ru(COPh)(CO)_2]$

(c) EtCH=CHEt < CH₂=CH₂< CF₂=CF₂

(d)

$$[Cp_2Zr(CO)_2] \longrightarrow Cp_2Zr \longrightarrow Me$$

$$Me$$

$$Me$$

$$Me$$

$$Me$$

 $\mathbf{M} = cis-[\mathrm{Mn}(^{13}\mathrm{CO})(\mathrm{COMe})(\mathrm{CO})_4]$

(e) (i) HBF₄ or HCl

(ii) EtI or EtBr or EtCl

(f) Z =

