THE OPEN UNIVERSITY OF SRI LANKA B. Sc. DEGREE PROGRAMME 2016/2017 CMU3122/CME5122 – ORGANOMETALLIC CHEMISTRY ASSIGNMENT TEST-I (NBT)

DATE: 21st April 2017 Duration = 1 hTIME: 4.15 p.m. to 5.15 p.m. ANSWER ALL QUESTIONS Select the most correct answer to each question given below. Mark a cross (X) over the most suitable answer on the given answer script. Any answer with more than one cross will not be counted. PART A (45 marks) 1. Consider the following organometallic ligands, (iii) ≡CPh (i) ethyl (ii) σ-allyl The monohapto ligands is/are 1) (i) only 2) (i) & (ii) only 3) (i) & (iii) only 4) (ii) & (iii) only 5) (i), (ii) & (iii) 2. The possible coordination mode(s) of the cyclopentadienyl ion, (in a mononuclear complex) is/are? 3) η^1 and η^5 only. 1) η^5 only. 2) η^3 only. 5) η^1 , η^3 and η^5 only. 4) η^1 and η^3 only. 3. Consider the following statements (i) Carbene ligand is a two-electron donor. (ii) The M≡C bond is shorter than the M=C bond. (iii) In Fischer carbenes, the M=C carbon is nucleophilic whereas in Schrock carbenes it is electrophilic. The correct statement/s is/are 2) (i) & (ii) only 3) (i) & (iii) only 1) (i) only 4) (ii) & (iii) only 5) (i), (ii) & (iii) 4. According to the covalent model, which one of the following is not a 3e-donor ligand? 3) ≡CR 4) π-allyl 1) Nitrosyl 2) N≡N 5) NO 5. A LX type ligand is 1) $\eta^3 - C_3 H_3^-$ 2) ≡CR 3) vinyl 4) = CHC15) $\eta^5 - C_5 H_5^-$ 6. The IUPAC name of $[Ti(\eta^4-C_4H_4)Cl(COMe)(CO)]$ is 1) Titanium(n⁴-cyclobutadiene)chloroacetylcarbonyl 2) Chloroacetylcarbonyl(η⁴-cyclobutene)titanium 3) Acetylcarbonylchloro(n⁴-cyclobutadiene)titanium 4) Acetylcarbonylchloro(η⁴-cyclobutene)titanate(II) 5) Chloroacetylcarbonyl(η⁴-cyclobutene)titanate 7. The weakest π -acceptor ligand among the following ligands is 2) CO 3) NO* 4) CN-1) PF₃

4)7

5)8

8. The coordination number of Pt in $[(\eta^2-C_4H_4)PtBr(COMe)(PMe_3)]$ is

3)6

1)4

2)5

9. In metal carbonyls, wha	t is true about back donation?					
	nd order increases as back donat	ion decreases.				
2) the carbonyl fi	requency increases as back dona-	tion decreases.				
3) the bond stren	gth of C≡O decreases as back do	onation decreases.				
4) the M–CO box	nd length decreases as back dona	ition decreases.				
the bond stren	gth of C≡O increases as back do	nation increases.				
10. Consider the following	statement/s about metal-alkyne	complexes.				
-	r back donations than metal-alke	•				
(ii) Alkyne acts as a d	ihapto 2e donor.	,				
(iii) Alkyne acts as a tr	ihapto 3e donor.					
The correct statement/s	is/are					
1) (i) only						
4) (i) and (ii) only	5) (i), (ii) and (iii)					
11: What is not true about 1) It is isolectronic wit 3) It is a 3e-donor 5) It is paramagnetic.	h CO 2) It is a le donor	exes with a bent M-NO group.				
12. According to the Ionic	Model, what is the oxidation n	umber of Ti in				
[(η ³ C ₅ H ₅)TiCl(COMe)	(CN)(CO)] (Atomic number of [Γi is 22).				
1) 1 2) 2	3) 3 4) 4	5) 5				
 Oxidative addition Coordination num Coordinatively sat prior dissociation. Electron withdraw 	wing statements is true about ox of X-Y to M always results in a ber of the metal is always increa urated compounds can undergo of ing ligands promote oxidative ac d always be coordinatively satur	is-MX(Y) arrangement. sed by two units. exidative addition reactions by				

- 14. $[(\eta^5-Cp)_2Fe_2(CO)_4]$ is a **coordinatively saturated** complex. Which one of the following statements is **not true** about the above complex?
 - 1) Fe belongs to the Group 8.
 - 2) It has two bridging carbonyl ligands.
 - 3) Each iron centre has 18 valence electrons.
 - 4) There is a Fe-Fe bond.
 - 5) Each metal centre has two terminal carbonyl ligand.
- 15. Example for an insertion reaction is
 - 1) $[Fe(CO)_5] + CF_2 = CF_2 \rightarrow [(OC)_4 Fe(\eta^2 CF_2 = CF_2)] + CO$
 - 2) $[Ni(PEt_3)_3] + PhCl \rightarrow [Ni(Ph)(Cl)(PEt_3)_2] + PEt_3$
 - 3) $[MeMn(CO)_5] + CO \rightarrow [Mn(COMe)(CO)_5]$
 - 4) $[MeMn(CO)_5] + CF_2=CF_2 \rightarrow [Mn(CFMeCF_2Me)(CO)_5]$
 - 5) $[Ni(PEt_3)_3] + CH_2 = CHCH_2Br \rightarrow [(\eta^3 C_3H_5)Ni(Br)(PEt_3)] + 2 PEt_3$

Part B (55 marks)

Answer all the questions in the space provided. Attached sheets will not be graded.

- 1. (a) Give the IUPAC name for [RuHCl(CO)(η^2 -CH₂=CH₂)(η^3 -C₅H₅)].
 - (b) Draw the structure of [RuHCl(CO)(η^2 -CH₂=CH₂)(η^3 -C₅H₅)].

- (c) [RuCl(NO)(η³-C₃H₅)(C≡O)] has a linear Ru–NO fragment. Determine the **VEC** of Ru. Ru is a Group 8 metal.
- (d) Determine the **coordination number** of Ru in [RuHCl(CO)(η²-CH₂=CH₂)(η³-C₅H₅)]
- (e) Draw the **structures** of **geometrical** and **optical** isomers of $[Fe(ox)(dppe)(CO)_2]$. dppe = $PPh_2CH_2PPh_2$ is a bidentate ligand; ox = oxalate ion.

(f) Draw the **orbital diagram** between a metal (M) and a C \equiv O ligand, indicating the σ - and π -overlap.

(g) List three ligands which are isoelectronic with NO⁺.....

THE OPEN UNIVERSITY OF SRI LANKA
B. Sc. DEGREE PROGRAMME 2016/2017
CMU3122/CME5122 – ORGANOMETALLIC CHEMISTRY - LEVEL 5
ASSIGNMENT TEST-I (Part A)

MCQ ANSWER SHEET: Mark a cross (X) over the most suitable answer.

															Pai	rt A	
Reg. No.				For Examiners Use										Part B			
															Tota	al %	
	Marks																
				Со	rrec	t Answ	ers										
				Wr	ong	Answer	s	-									
				то	tal												
				-													
1.	1	2	3	4	5	2.	1	2	3	4	5	3.	1	2	3	4	5
4.	1	2	3	4	5	5.	1	2	3	4	5	6.	1	2	3	4	5
7.	1	2	3	4	5	. 8.	1	2	3	4	5] 9.	1	2	3	4	5
				<u></u>									<u>L</u> .			1	
10.	1	2	3	4	5	11.	1	2	3	4	5	12.	1	2	3	4	5
13.	1	2	3	4	5	14.	1	2	3	4	5	15.	1	2	3	4	5

CMU3122

ORGANOMETALLIC CHEMISTRY

CAT 01 (Answer Guide)

1.	5	2. 5	3. 2	4. 2	5. 1
6.	3	7. 4	8. 1	9. 2	10. 4
11.	1	12. 4	13. 3	14. 5	15. 3

Part B

1. a) Carbonylchloro(η³-cyclopentadienyl)(η²-ethene)hydroruthenium

c) Covalent Model VEC = 8e (Ru) + 3e (NO) + 1e (Cl) + 3e (
$$\eta^3$$
-C₃H₅) + 2e (CO)
= 17e
Ionic Model VEC = 6e (Ru) + 3e (NO) + 2e (Cl⁻) + 4e (η^3 -C₃H₅) + 2e (CO)

d) Coordination number (CN) = Number of electron pairs donated to the metal = 1+1+1+1+2=6 pairs

$$CN = 6$$

e)
$$O \cap Ph_2 \cap$$

g) CO, N₂, CN